
RISC OS
Style Guide

Copyright © 1993 Acorn Computers Limited. All rights reserved.

Updates and changes copyright © 2015 RISC OS Open Ltd. All rights reserved.

Issue 1 published by Acorn Computers Technical Publications Department.

Issue 2 published by Acorn Computers Technical Publications Department.

Issue 3 published by RISC OS Open Ltd.

No part of this publication may be reproduced or transmitted, in any form or by
any means, electronic, mechanical, photocopying, recording or otherwise, or
stored in any retrieval system of any nature, without the written permission of the
copyright holder and the publisher, application for which shall be made to the
publisher.

The product described in this manual is not intended for use as a critical
component in life support devices or any system in which failure could be expected
to result in personal injury.

The product described in this manual is subject to continuous development and
improvement. All information of a technical nature and particulars of the product
and its use (including the information and particulars in this manual) are given by
RISC OS Open Limited in good faith. However, RISC OS Open Limited cannot
accept any liability for any loss or damage arising from the use of any information
or particulars in this manual.

If you have any comments on this manual, please complete the form at the back of
the manual and send it to the address given there.

All trademarks are acknowledged as belonging to their respective owners.

Published by RISC OS Open Ltd.

Issue 1 for RISC OS 2, December 1990 (Acorn part number AKJ18).
Issue 2 for RISC OS 3, July 1993 (Acorn part number 0470,296).
Issue 3, February 2015 (updates by RISC OS Open Ltd).
ii

Contents

About this guide vii

About this Guide vii
Finding out more viii

1 Introduction 1
The scope of this Guide 1
Who should use this Guide? 1
Why have a standard? 2
Into the future 2

2 Starting a new application 3
Thinking about a new application 3
Ease of use 3
Multi-tasking 4
Data interchange 5
Consistency on the desktop 5
Quality 6
Terminology 6
Versions of RISC OS 6

3 The desktop 9
Using the desktop 9
The pinboard 10
Multi-tasking 10
Terms for desktop items 10

4 The mouse 13
Introduction 13
Mouse buttons 13
Mouse operations 14
Mouse functions 14
iii

5 Icons 17
Introduction 17
When to use icons 17
Appearance of icons 17
Large and small icons 18
Icons and screen resolution 18
Loading an application 18

6 Standard operations 19
Introduction 19
Starting an application 19
Providing information about your application 20
Closing windows 20
Quitting applications 21
Editors 21

7 Windows 27
Introduction 27
Parts of a window 27
Bringing a window to the front 28
Sending a window to the back 28
Closing a window 28
Iconising a window 29
Resizing a window 30
Moving a window 30
Scrolling a window 31
Nesting a window 31
Context-sensitive pointers 32
Dragging objects that are within a window 33
Taking over the screen 34

8 Menus 37
Introduction 37
Basic menu operation 37
Menu structure 39
Standard menu items 42
Appearance of menus 46
Pop-up menus 47
Size and position of menus 47
iv

9 Dialogue boxes and toolboxes 49
Introduction 49
3D and dialogue boxes 49
Types of dialogue box 50
Dialogue boxes and keyboard shortcuts 51
Default actions 52
Standard components in dialogue boxes 52
Scrollable lists and pop-up menus 56
Standard dialogue boxes 57
Appearance of dialogue boxes 63
Wording of dialogue boxes 65
Toolboxes 67

10 Handling keyboard input 69
Introduction 69
Gaining the caret 69
Unknown keystrokes 70
Keyboard shortcuts 70
Special needs support 75

11 Handling selection 77
Introduction 77
Selecting text 77
Selecting objects 78

12 Colour and sound 83
Introduction 83
Colours and the palette 83
Sound 85

13 Configurations and user choices 89
Introduction 89
Hardware configuration 89
User choices 91
Software configuration 93
v

14 International support 95
Introduction 95
Language 95
Character sets 95
Information formats 96
Unicode support 97

15 Implementing the design 101
Introduction 101
Choice of programming language 101
Using legal operations 102
Responsiveness 103
Units of measurement 103
Sprites 103
Windows 105
Menus 106
Dialogue boxes 107

16 Application directories 115
Introduction 115
Application resource files 115
The !Boot file 116
The !Sprites file 116
The !Run file 119
The Messages file 119
The Templates or Res file 120
The !Help file 120
Shared resources 120
Large applications 121
Distribution 122

17 Appendix A: Significant changes 123

18 Glossary 125

19 Index 135
vi

About this guide
About this Guide
This Guide describes the standards of ‘look and feel’ to which you should write a
RISC OS application. It covers aspects of designing a new application, and
implementing the design:

● The introduction explains why this Guide was written and how to use it. It
explains the scope of the Guide, and why a standard look and feel is desirable.
It also looks at the issues you need to consider when you begin designing a
new application.

● Chapters 2–13 deal with design issues, concentrating on the user interface.
This includes the design of menus and dialogue boxes, how to load an
application and other issues that are part of the design of an application.

● Chapters 14–16 deal with the implementation of the issues covered in the
earlier chapters and of the application's functionality. They concentrate on
programming issues such as the structure of application directories and how
to construct the elements of dialogue boxes.

● Finally, there is a glossary of terms used in this Guide.

The first edition of this Guide covered aspects of RISC OS 2 application design.

In the second edition, the guidance was updated to cover the newly introduced 3D
look and feel which became standard in RISC OS 3, and implications that had on
design.

This is the third edition of the RISC OS Style Guide. The Guide has been updated to
reflect the developments in application design both within RISC OS and amongst
the developer community.

The main aim of the Guide is to help all developers to give their applications a
common and consistent look and feel so that users will be able to find their way
around new programs easily, and will be able to use applications together when
appropriate. There is advice on how to implement this, and detailed descriptions
of how to produce the icons you will need to use in your dialogue boxes and
windows.
vii

Finding out more
Finding out more
The RISC OS Programmer’s Reference Manual gives full documentation of RISC OS, and
the calls to the operating system that you may need to use in your code. The
chapter entitled The Window Manager is especially relevant, and tells you how to
implement many of the standards defined in this Guide.
viii

1 Introduction
The scope of this Guide
This Guide will help you to specify, plan, and write software to work within the
graphical user interface (or GUI) used by RISC OS. It describes the ‘look and feel’ a
user expects from RISC OS applications. Because it is concerned with the design of
applications on all levels, you will have to bear in mind many of the points raised
here quite early on in development whether you are writing a new application or
porting one from another platform.

The Guide is concerned primarily with maintaining consistency and standards in
all areas of the style of applications. It describes the standards which we hope you
will adhere to so that all developers can move towards a high level of consistency
in look and feel, helping users to learn new applications quickly.

By ‘style’ we mean not only the look of an application on the desktop but also
features of its functionality, how well it integrates with other applications and the
extent to which it can use common conventions (such as consistency in keyboard
shortcuts). These are not issues that can be sorted out at the last moment, but
areas you need to consider from the very start of the development process. Some
of the points raised are simple rules that are easy to follow – setting the distance
between icons in a dialogue box, for example. Others require you to interpret
guidelines in the context of your applications.

The scope of this Guide is so large that in places it is necessarily imprecise.
Wherever possible and helpful, we have given examples to help make points
clearer. Sometimes, the Guide has to enter uncharted waters, and here we can only
make recommendations and indicate the direction we expect developments to
take. In some areas there may be few or no models to follow, but we hope the
guidelines will enable all developers to move towards a common goal. If you follow
the guidelines given in this Guide, you should be able to help users learn and make
the most of your applications without limiting what your applications can do.

Who should use this Guide?
You should read this Guide if you are involved in the design or writing of
applications to run from the RISC OS desktop. This includes designers and writers
of games or other applications that may take over the screen completely; there are
some guidelines on this in the section entitled Taking over the screen on page 34.
1

Why have a standard?
The structure of this Guide reflects the process of designing or specifying an
application and the implementation of the design in programming the application.
Chapters 2–13 will be most useful to the person designing an application. They
enable the designer to specify how the menu tree should be structured, what
should appear on each dialogue box, how error messages should be worded, and
so on. Chapters 14–16 will be most useful to the person or people responsible for
writing the program. They cover such details as precise placing of buttons on
dialogue boxes and where to put resources.

You should read all the way through the Guide once; we have kept it short so that
this is not too time-consuming. You can then use it as a reference work whenever
you design or write an application.

Why have a standard?
One of the most important aspects of developing applications to run under
RISC OS is to make sure that applications within the desktop world present a
consistent and reliable interface to a user. This applies both to how an application
looks and to how it behaves. This is to the benefit of all users and developers. If the
RISC OS world is a consistent and coherent environment, users will feel confident
and at ease even with a new application because it will use a familiar interface and
structure. This is to your advantage as well as the user’s advantage. A user who has
found your package easy to use, following the styles and procedures that are
already familiar from other applications and the operating system, will feel happy
using your applications and is likely to buy more of them in the future.

Into the future
The requirements set out in this Guide are demanding, and in places require
significant effort to implement. Some of the Applications Suite itself does not
conform in all respects; as the operating system and Applications Suite change
relatively infrequently, they cannot be the main means of introducing change. As
new applications are developed or existing applications are updated, we should all
aspire to a close match to the current style guidelines.

The standard to which we all aspire will evolve continuously as RISC OS evolves
and improves, so ‘style’ is not static. No doubt future issues of this Guide will be
able to be more precise in some recommendations as the developer community
discover the standards and conventions that work best.

Future issues of this Guide may need to consider new ways that users interact with
their computer, through pointing devices other than the conventional 3 button
mouse, such as touch driven interfaces. These all bring new challenges to RISC OS
application design.
2

2 Starting a new application
Thinking about a new application
When you begin to think about developing a new application, you will take many
considerations into account. The most important of these will be the functionality
you want for your application, and the market you are targetting. At the same time,
though, you should begin to think about the style you will give the application. If
you begin considering this at the earliest stages of development, it will be fairly
easy to make sure your new application fits in with the RISC OS desktop and the
applications that use it.

Try to bear the following considerations in mind early on. There is more
information on the first two in this chapter, and more on each of the others in later
sections of this Guide.

● Your applications should be easy to learn and easy to use.

● Your applications should fit in well with others that use the desktop: aim for
consistency by following the design guidelines given in this Guide.

● Use the RISC OS Window Manager module (the programming interface to the
RISC OS desktop, commonly known as the Wimp) so that your applications will
look right and work properly with future releases of the Wimp.

● Use memory efficiently; remember that some users may have only a 4MB
machine, and users with larger machines will want to run several applications
at once.

● Support all reasonable configurations of hardware and software that a user
might have.

It goes without saying that you will decide at an early stage in development what
you want your application to do and which language you will use to program it.
There are some comments on these issues later in this chapter (see the section
entitled Quality on page 6 and the section entitled Choice of programming language on
page 101).

Ease of use
The principal aim of this Guide is to help you produce applications that make the
computer easy and pleasant to use, for users with varying levels of experience and
different requirements.
3

Multi-tasking
A user should find an application:

● easy to learn

● easy to re-learn

● easy to use productively.

You can help the whole developer community to achieve these aims by following
the guidelines that work towards consistency and common standards. To help the
user to learn, re-learn and use applications you should:

● Make it easy for users to see all the options and actions available within your
application.

● Make each user action perform a well-defined task.

A good guideline is whether you can describe the task using a single noun-verb
combination, such as ‘File-delete’. Typically the user will select something (the
noun) and then choose an action (the verb).

● Break down complex tasks so they can be performed as a series of simpler
tasks.

● Give your application a clear and logical structure so that users don’t have to
remember complex sequences or too many details.

● Provide clear feedback to each action, so the user feels in control.

This includes things such as using the hourglass when your application is busy
in the foreground, putting status words under icons on the icon bar or
changing icons to show the state of a file, application or tool.

● Provide a way for users to undo the mistakes they’ll inevitably make.

Usually this will mean offering an Undo function that can reverse either a
single action or a sequence of actions. You might also consider providing a
Redo function to reverse an Undo.

● Warn and ask for confirmation when an action may be destructive.

It’s especially important to do this if you don’t provide an Undo function. Issue
a warning by default, although you may want to provide a facility for
experienced users to turn off such warnings.

Multi-tasking
A multi-tasking interface requires that applications work together for a user of the
machine. This means that:

● they co-operate in sharing the machine

● they look harmonious

● their user interfaces are similar
4

Starting a new application
● files are transferable between applications

● the whole is more important than a single application.

A habitual user of the desktop environment and the Applications Suite programs
should find your program easy to use and natural to learn.

Data interchange
One of the most elegant features of the RISC OS desktop is that users can easily
move files between compatible applications. If your own applications integrate
well with others, including the Applications Suite, users will be keen to use them.
A primary requirement is that data file formats are compatible or interchangeable.
Aim either to use common data file formats (such as CSV files, for example) or
make provision for importing from or exporting to different filetypes. There is a list
of filetypes in the RISC OS Programmer’s Reference Manual, and further information on
filetypes in the section entitled Standard icons provided on page 117.

An advantage for developers of the RISC OS environment is that new applications
don’t need to duplicate functionality already offered elsewhere. For example,
printing should use the standard RISC OS printer drivers. This saves you effort and
means that users already know how to set up printing.

Consistency on the desktop
Before users begin to use your application, or even load it, it will have a presence
on the desktop as its icon is visible in a directory display. How this icon looks, and
the appearance of the icon(s) it uses on the icon bar and to represent its files,
should be harmonious with other items on the desktop. Users must be able to load
your application by double-clicking on its icon and, if it uses files, to be able to
open a file by dragging it to the icon on the icon bar. All these are common desktop
activities which users will expect your application to support. The look of the
windows, menus, dialogue boxes and error boxes your application uses should
also be consistent with those used by other desktop applications so that the user
always feels secure and at ease using the familiar interface, even if it is for a new
purpose.

If you are writing a game, your application may not usually be run on the desktop,
but may take over the whole screen while running. Even so, its icon will be visible
in directory displays and on the icon bar and it must be consistent in these
respects with other applications. There is more about single-tasking applications
in the section entitled Taking over the screen on page 34.

The appearance and wording of menus, dialogue boxes, error boxes and the
appearance of sprites and windows are described in the following chapters.
5

Quality
Quality
It is much better that you write a small program that does something simple, and
does it well, than a sprawling mass that crashes occasionally. In general, a simple
program is often an elegant and efficient one; quality and simplicity frequently go
hand in hand. Design applications carefully and don’t duplicate functionality that
is already provided by the Wimp, the operating system or the Applications Suite.

Terminology
You must always bear in mind that your application will mainly be used by the
general public, not just by programmers. If you use consistent terminology, and
avoid jargon, it will make the application more friendly to them. There is an
established vocabulary for referring to parts of the desktop, the mouse buttons and
mouse operations. You should use this when communicating with the user. This
includes menu and dialogue box text, error messages, help text, manuals or guides
and any other user documentation. The names of action buttons, menu items and
other very specific items are covered in the appropriate chapters of this Guide.

Versions of RISC OS
There have been several major versions of RISC OS which you need to support:

● RISC OS 2 was the original version of RISC OS, released in May 1989. This has
been superseded by RISC OS version 3 and most users are expected to
upgrade. It is not required to support any version of RISC OS 2.

● RISC OS 3.00 was supplied with early A5000 systems and has been replaced by
RISC OS 3.10. It is not required to support RISC OS 3.00.

● RISC OS 3.10 was the general release of RISC OS 3 for the Archimedes series of
computers from Acorn. This is the oldest version that you need consider
supporting, unless there is a specific feature that your application requires
that was not present in this version - for example 16 bit sound output.

● RISC OS 3.50, 3.60, 3.70, 3.71 were issued for the Risc PC, A7000 and A7000+
family of computers from Acorn. These should all be supported unless there is
a specific feature that your application requires that was not present in these
versions - for example long filename FileCore discs.

● RISC OS 4.02 and 4.39 were the two ROM based releases from the continued
development of RISC OS by RISCOS Limited. There were some minor variants
numbered 4.00, 4.01, 4.03 and 4.04 for specific hardware, but from an
application programmer’s point of view these can be considered identical to
version 4.02.
6

Starting a new application
● RISC OS 5 utilises a hardware abstraction layer to allow it to run on many more
varied computer models than earlier versions. It also runs exclusively in ‘32 bit’
mode which removes a number of memory limitations imposed previously.

You can assume that all users will have a version of the Universal Boot application
installed on their computer. In many cases this will automatically load extra
supporting modules from disc in order to bring an older ROM release up to par. For
example, the Nested Window Manager is provided and will be loaded
automatically when necessary.
7

Versions of RISC OS
8

3 The desktop
Using the desktop
All applications will need to use the desktop, even if only briefly in the case of
some games usually run in full screen mode. It is important that while your
application uses the desktop, it looks and behaves in the same way as other
desktop applications. This will make your application easy for users to learn and
use and will help to maintain the consistency and harmony that we should all be
aiming for in developing applications for RISC OS.

If your application usually operates from the desktop, all the guidelines here on
designing the user interface will be relevant to you. They cover:

● loading, starting and leaving applications

● using the mouse

● icons

● windows

● menus

● dialogue boxes and toolboxes

● handling input

● selection

● using colour and sound

● editors

● user preferences

● internationalisation.

From this chapter to chapter 13, the Guide deals with the design of these items,
not the implementation through programming. There is some guidance on
implementation issues in chapters 14–16, but for detailed information on how to
create and manipulate desktop items you will need to look in the RISC OS
Programmer’s Reference Manual.

If your application takes over the whole screen, or has an option which users can
choose to allow it to do so, it will still need to start up from the desktop and appear
on the icon bar as an icon in the same way as applications which operate wholly
within the desktop environment. The PC Emulator, which may be run as a single
9

The pinboard
task replacing the desktop, is an example of an application that does this. Much of
this Guide will be relevant to you, even if your application is not normally going to
use the desktop while it is running. Some of the advice in the section entitled
Taking over the screen on page 34 will help you to integrate your application into the
RISC OS world.

The pinboard
RISC OS provides a ‘pinboard’ facility, allowing the icons of open or closed files or
directories to be ‘pinned’ to the backdrop of the desktop. Users can quickly access
these files and directories and open a window onto any of them by double-clicking
on the icon. This saves time opening sequences of directories, and saves space on
the desktop by allowing users to ‘iconise’ an open file or leave directories
accessible without being open. You should provide a sprite that can be used to
represent iconised windows from your application. See the section entitled Sprites
for iconised windows on page 105.

Multi-tasking
Remember that users are likely to want to run your application alongside others.
Multi-tasking is one of the most important benefits that RISC OS offers users, so
make sure your application does not impair the computer’s ability to multi-task
and do not reset any configuration options or other settings that will affect other
applications.

Terms for desktop items
Consistent use of terminology is important for users. To avoid confusion and
difficulty, you must use these terms to refer to parts of the desktop:

● The bar at the foot of the screen is the icon bar.

● The background to the desktop is called the pinboard.

● A window may be a main window, a menu, a dialogue box, an error box, an info
box or a pane window.

● A main window may be a document window, a control window or a directory
display.

● A main window showing the contents of a directory is called a directory display
and not a directory viewer.
10

The desktop
● A menu has menu items, some of which lead to submenus (no hyphen). You may
shorten menu items to items, providing the context is clear. The main menu from
which submenus may be accessed is called the root menu.

In manuals, menu items and the names of action buttons (see page 54) such
as Save should be in bold text.

● A menu that appears when you press Menu over an icon on the bar is an icon
bar menu.

● A menu that appears when you press Menu or Select over a button in a
dialogue box is called a pop-up menu.

● A chosen menu item is shown highlighted (no need to say ‘in inverse video’).

● A window used for a dialogue between user and computer within an
application or on the desktop is a dialogue box if there is a delayed effect - that
is, the user must click on a button to initiate an action. A dialogue box allows
the user to give some details of an action and initiate the action, or close the
dialogue box taking no action.

A dialogue box that remains on screen if the user clicks outside it is a persistent
dialogue box; a dialogue box that disappears if the user clicks outside it is a
transient dialogue box.

● An error box is a special type of dialogue box that gives information to the user,
and requires acknowledgement that it’s been read.

● An info box is a window that displays information for the user to read. It may be
transient, in which case it has no control icons. If it is persistent, it may have a
control icon allowing the user to display more information, and will have a
Close icon or action button to remove it.

● A pane window may be a toolbox or a scrolling list of options.

Other special terms are explained as they occur in this Guide; there is also a
glossary.
11

12

4 The mouse
Introduction
Although the mice supplied with different systems vary in design, their function
and the function of each button is the same across all RISC OS systems. It is
important that you support the established standards of mouse activity, and use
the established vocabulary when describing the mouse and mouse activity.

Mouse buttons
The mouse has three buttons:

The buttons have these names because of the actions they perform:

● Select is used to make an initial selection

● Adjust is used to toggle elements in and out of this selection and to add extra
selections without cancelling the current ones

● Menu is used to call up a menu, and is often incorporated into a scroll wheel by
pressing the wheel while it is stationary.

Adjust
Menu
Select
13

Mouse operations
Mouse operations
The mouse moves a pointer on the screen.

These are the terms you should use for mouse operations:

Press press a button down

Release release a button

Click press and release a button

Double-click click twice quickly, without moving the mouse

Triple-click click three times quickly, without moving the mouse

Drag press a button and move the mouse, then release the
button

Choose click on a menu item

Select change an object’s state by clicking on it.

Here are some examples of these terms in use:

Type Ctrl-Z or choose Clear from the menu.

Triple-click Select to select the whole line of text.

Press Select, drag the icon to a directory display and then release Select.

Select the object you want to delete.

Common faults include confusing press and click, and talking about selecting menu
items.

Remember that the mouse speed and double-click speed are configurable; you
can’t rely on users configuring their mouse to particular settings.

Mouse functions
Do not replace the established functions of the mouse buttons with anything new.
Use:

● Select to choose items from a menu, select objects, click on window parts or
icons to choose or use them, indicate positions in the window, or drag objects.

● Menu to display a menu anywhere within the window or choose an item from a
menu. If you are using menu buttons in dialogue boxes, a user must be able to
use the Select or Menu button to call up the menu.

● Adjust to alter selections, reverse the direction of movement brought about by
clicking on an icon (such as an adjuster arrow) or scroll arrow, choose an item
from a menu leaving the menu displayed, open a directory while closing its
‘parent’, or open a ‘parent’ directory while closing the ‘child’.
14

The mouse
Where possible, Select should be used for all the main functions in your
application; Adjust should not be needed by new users, but be used for shortcuts
and alternatives to other procedures.

In addition, text editors should support the following mouse shortcuts:

● click to position the caret

● double-click to select a word.

If it is appropriate, triple-click should be supported to select a line or paragraph,
depending on the context.
15

16

5 Icons
Introduction
The first that users see of your application is its icon in a directory display. Make it
attractive and intelligible; if you can, give a hint of its function. The Edit and Paint
icons are good examples of this. However, you need to bear the following
guidelines in mind when designing icons for your application. It is difficult to
design good icons; consider enlisting the help of a graphic designer.

There is more precise information on the sizes for icons in the section entitled Size
of sprites on page 104.

When to use icons
RISC OS uses icons to represent a variety of different objects:

● applications (including editors)

● files (including editors’ documents)

● devices (such as discs and printers)

● iconised windows.

For an application, you will certainly need an application icon and may also need a
file icon. However, if your application uses files of an existing filetype, use the
standard icon for its files.

Appearance of icons
Application icons will appear on the icon bar and should have an irregular shape.
Square or rectangular icons look dull on the icon bar and are confusing in directory
displays where they tend to look like file icons (see below). You may use any
colours you like for application icons. Use a background mask (transparent) rather
than a grey background for sprites representing applications.

File icons should be ostensibly square sprites, with a border to match the other file
icons in the current theme. If the file is a document that ‘belongs’ to a particular
editor, try to make the editor’s icon and the document’s icon look related to each
other, even though the editor’s icon has an irregular shape.
17

Large and small icons
Device icons will often have an irregular outline. They should use colour to match
the major foreground colour of other devices in the current theme, for example, the
harddisc icon. Device icons with an irregular outline must have a transparent mask.

Large and small icons
Icons that can appear in a directory display will need large and small versions. If
you don’t define a small icon, RISC OS will display the large icon at half size. As the
appearance of a scaled-down icon is unlikely to be as pleasing as a specially
designed small version, it is best to design your own large and small icons. Large
icons are used on the icon bar and in directory displays that show Large icons.
Small icons are used in directory displays that show Small icons or Full info. There
is detailed information on the size the icon should be in the section entitled Size of
sprites on page 104.

Icons and screen resolution
You should provide versions of the icons your application uses for standard
(square pixel) resolution and optionally high resolution and rectangular pixel
screen modes. There is more about icons for different screen modes in the section
entitled The !Sprites file on page 116.

Loading an application
When a user double-clicks on an application icon in a directory display, the
application must load, installing its icon on the icon bar. The icon on the icon bar
may include some text as well as a sprite. This may give details about the state of a
device, for example. The section entitled Positioning icons on the icon bar on page 104
explains how to position the icon and any text attached to it.
18

6 Standard operations
Introduction
It is important that all applications behave in the same way when performing
standard operations such as starting up and closing down. In addition, there are
some common procedures used by many editors which must also be standard.

Starting an application
You must start your application if a user:

● Double-clicks on its icon in a directory display using either Select or Adjust.
This should load a new copy of your application, putting its icon on the icon
bar.

● Drags your application’s icon to the icon bar.

● Double-clicks on a file icon in a directory display using either Select or Adjust,
where the file ‘belongs’ to the application, and the application has not already
been started. If the application isn’t already loaded, it must start up and open
the chosen document. If it is already loaded, it must just load the document.

● Drags a file to a printer icon using either Select or Adjust, where the file
‘belongs’ to the application, and the application has not already been started.
If the application isn’t already running, it must start up and print the file. If it is
already started, it must print the document.

Applications should put an icon on the icon bar; only very small applications,
which may be better described as utilities, do not need to do this.
19

Providing information about your application
Providing information about your application
The ‘About this program’ dialogue box is accessed from the Info item which you
must provide at the top of the application’s icon bar menu. The dialogue box
provides useful information about your application. For example:

You can make some modifications to this basic design as long as the dialogue box
does not become too large. It is a good idea to include a line showing the licence
type. This helps a user identify the limits of allowed use.

Access to the application’s help should also be provided as described in the
section entitled Icon bar menu on page 46.

Closing windows
If a user clicks with Select on the Close icon of a window or presses ^F2, the
application must

● Close the window immediately if no work will be lost: for example, if it is
unmodified, or if a view of the file is still open.

● Display the dialogue box described and illustrated in the section entitled
Closing windows on page 63 if the information in the window is not safe.

For more information on closing windows, see the section entitled Closing a window
on page 28.
20

Standard operations
Quitting applications
The last item in an application’s icon bar menu must be Quit. If a user chooses this
item, the application must first close all windows belonging to it. If any windows
contain unsaved data, the application should display a dialogue box like this:

The application may only quit once all the user’s information is safe or has been
explicitly discarded by the user.

You must follow this procedure even if the user has used another method (such as
the Task Manager) to quit the editor, or has used Shutdown. Your application must
be able to handle Message_PreQuit messages from the operating system and warn
the user of any unsaved data which will be lost if Shutdown takes place
immediately.

Editors
An editor is an application which can create, load, display, edit and save documents of
a particular type. A document is usually stored as a file, with a particular filetype.
Most editors can load several documents at once; these are called multi-document
editors. Examples include Draw, Edit and Paint. Editors must comply with all the
rules laid down in other chapters within this Guide; this section gives some extra
guidance for designers of editors.

It is important that you consider how data may be transferred between your own
application and other applications. Wherever possible, allow the user to save data
from the document in a standard file format (such as text, or a Draw file) to allow
transfer between editors.

Creating a new document

You must create a new document and open a window on it if a user:

● clicks on the editor icon on the icon bar using Select

● chooses a new document option from the application’s icon bar menu (this
may be available if you offer several document types, for example).
21

Editors
If your editor needs arguments to create a new document, such as a page size, you
may also use a dialogue box during this process. If a style sheet is required (for a
DTP program, for example) then you may instead use a persistent dialogue box,
and allow the user to drag the style sheet from a directory display.

In a single-document editor, if a user clicks on the editor icon on the icon bar you
must create a new, blank document only if a document is not already loaded. If a
document is already loaded, you must instead move the editor window to the front
of the window stack, in case it has been obscured by other windows.

Loading a document

You must load a document and open a window on it if a user:

● double-clicks on a document icon within a directory display using either Select
or Adjust, first starting the editor if necessary

● drags a document icon from a directory display to your editor’s icon on the
icon bar using either Select or Adjust

● drags a document icon from a Save dialogue box to your editor’s icon on the
icon bar using either Select or Adjust.

In the last two cases, the editor must already have been started for its icon to be on
the icon bar. This way of loading a document allows a user to specify exactly which
editor to use. For example, you can drag a PostScript file onto the Edit icon to look
at or edit it.

It is normal for a new document to gain the input focus without the need for the
user to click in the window. There is more about gaining the input focus in the
section entitled Gaining the caret on page 69.

If the user tries to load a document which is already open on the desktop, bring the
window containing the document to the front rather than opening a new copy of
the document. If your application supports multiple views of the same document,
this is best offered through a New view menu item.

Your editor should be able to load and edit multiple documents concurrently.

As soon as a user makes any changes to a new document or a document that has
been loaded, the title bar must show an asterisk to indicate that the document has
been modified. This is only removed when the whole document (not a selection) is
saved.
22

Standard operations
Matching documents to editors

Editors use RISC OS filetypes to decide which files ‘belong’ to them.

An editor may only claim filetypes for which it is likely to be the primary editor. This
means that it will open a window for a document if the user double-clicks on the
file icon in a directory display. Your application may only claim files ‘belonging’ to
other editors if it provides a superset of that editor’s functionality; for example, you
may only claim Draw files if your editor does all that Draw can, and more besides.
If your application is not the primary editor for a filetype, it may still open and
process a file of a type it can handle if the user drags the file icon onto your
application’s icon on the icon bar.

Your editor must not claim filetypes that are mainly used to exchange information
between different editors, such as CSV files.

Inserting one document into another

You must try to insert a document into the one you are editing if a user:

● drags a document icon from a directory display to an open editor window
using either Select or Adjust

● drags a document icon from a Save dialogue box to an open editor window
using either Select or Adjust.

If the document is not of a type that your editor can import, it should display a
suitable error message.

Saving a document

The dialogue box you should use to save a document is described fully in the
section entitled Save on page 58.

The icon in a Save box should be treated in the same way as an icon in a directory
display. So as well as dragging the icon to a directory display to save the document
(or part of it), a user can also drag the icon from the save box:

● to the same editor’s icon, which creates a new (cloned) copy of the document

● to a different editor’s icon, which loads a copy of the document into that other
editor

● to another document, which inserts your document into the other document

● to a printer driver, which then prints the document.
23

Editors
The writable field you use in a Save dialogue box must be able to accommodate
pathnames up to 255 characters long, and have a validation string of ‘A~ ’, so that
spaces cannot be included in the pathname. The field must not accept a pathname
longer than 255 characters.

When you save the document, you must:

● Make sure the document’s datestamp is unchanged if the document was
unmodified; otherwise you must update it with the current date. This ensures
that the timestamp reflects when the document was last meaningfully
updated.

● Check any return codes and errors from saving the document, and take any
appropriate action, such as displaying an error in an error box.

● Mark the document as unmodified, unless the save was to a scrap file.

● Update your stored name for the document and the window title (if necessary).

● Remove the Save dialogue box and the rest of the menu, unless Adjust was
used to do the save, in which case they must remain on the screen.

It is becoming increasingly common for applications to save current status
information with a document. This may include, for example, the view scale,
document-specific choices, and window position.

Holding unsaved documents in memory

Don’t allow users to close document windows but retain documents and their
unsaved changes in memory; clicking on the close icon must always remove a
document from memory. It is very easy for users to lose information in documents
that aren’t currently displayed if they turn off the computer without first quitting all
applications or using Shutdown.

The pinboard provides a way for users to keep open documents with unsaved work
on the desktop in an iconised form, and this should remove the need for any other
method of doing this (see section entitled Iconising a window on page 29). If your
application needs to provide a way of hiding unsaved documents, supply it by
some other method, such as a menu option.

Printing a document

You must print a document if a user:

● chooses Print from a menu in your application

● presses the Print Scrn key on the keyboard while your application has the input
focus and a suitable document is loaded
24

Standard operations
● drags a document icon from a directory display to a printer driver using either
Select or Adjust

● drags a document icon from a Save dialogue box to a printer driver using
either Select or Adjust.

Before printing, your application will need to display a dialogue box for users to set
printing options. Sample dialogue boxes and guidelines on designing print
dialogue boxes are described in the section entitled Print on page 58.

If your application supports printing, it must show print borders, or have an option
to show them. The print borders show the user what will be printed on the page,
and where page breaks fall. Your application can retrieve information about the
margins set if there is a printer driver active, or use default values if no printer
driver is active.

If your application supports printing, the chapter entitled Printer Drivers in the
RISC OS Programmer’s Reference Manual gives full details of how the printer drivers
work and the protocols involved.

Providing information about documents

The ‘About this file’ dialogue box is accessed from the item Info in the File menu.
The dialogue box provides useful information about a document being edited. It
must include the full pathname of the document. For example:

Data transfer between editors

One of the aims of RISC OS is to encourage the free circulation of data between a
number of cooperating applications. The following points are all relevant to this:

● You must thoroughly document any data formats that your editor uses, and
make such documentation available to third parties.

● Your editor must be able to read in data formats that are in common use and
are relevant to its specific application area.
25

Editors
● Your editor must support the Scrap Transfer protocol and should implement
the RAM Transfer protocol for data transfer between applications. For full
details of these protocols, see the RISC OS Programmer’s Reference Manual.

● Your editor should be able to export the same formats of data that it can
include or import, even if that format is normally processed by another editor
(such as plain Text, a Sprite or a Draw file).

● Your editor should support the global clipboard, transferring data under the
control of the keyboard or the mouse. Supporting the drag-and-drop protocol,
as described in the section entitled Drag and drop on page 81, is desirable too.

● If you use Draw files you must render them accurately, as Draw itself does. The
DrawFile module is provided to help in this regard.

● Draw files should wherever possible be used as the standard form for
structured graphic data interchange. Remember that a Draw file can include
sprites, and so be used to transfer them.

Think about how users may want to use your own application with others, and try
out data transfer between them to make sure you provide the kind of support users
will actually need.
26

7 Windows
Introduction
This chapter describes how windows behave on the RISC OS desktop. Much of this
behaviour is enforced by the Wimp; the information is provided here for
completeness. For more details see the chapter entitled The Window Manager in the
RISC OS Programmer’s Reference Manual.

The chapter entitled Dialogue boxes and toolboxes on page 49 of this Guide has some
extra information that is specific to dialogue boxes; the chapter entitled Standard
operations on page 19 has some specific recommendations for editors.

The section entitled Colours on page 105 describes the standard colours that you
must use for windows.

Parts of a window
The icons around a window have the following names:

In running text in manuals and help information, use these names with initial
capitals (with the exception of slider and scroll bar, which should be in lower case
throughout).

Scroll bar

Slider

Scroll arrow

Adjust size icon

Toggle size iconIconise iconTitle barClose iconBack icon
27

Bringing a window to the front
Title bar

The title information of a window is handled by the Wimp. Ordinarily the title
information is centred on the title bar, but when its width is reduced it is instead
right-justified such that the leafname is always visible. Windows that represent
directories use the full pathname; windows that represent files show just the
leafname.

If the document in an editor window has not yet been saved or loaded, its Title bar
should show a suitable default document name, such as Textfile. If the document
has been modified, you must append a space followed by a * to the title. You may
also show the view number (if there are multiple views) and the window scale.
Avoid using the Title bar to show other information about documents or files; try to
use a pane or other method of showing additional information (such as whether a
grid is locked on).

You can set the window’s minimum size field so that the title length does not
restrict the window’s minimum size. If the title will fit in the title bar you should
centre it; if it won’t fit the window manager will right-justify it, so that at least the
end of the title is visible.

Bringing a window to the front
Clicking Select on a window’s Title bar brings it to the ‘front’ of the desktop. This is
handled by the Wimp, which reorders the windows in the stack so that your window
is in front of any others occupying or overlapping the same area. Resizing a window
using Select (see below), or clicking Adjust on a window’s Back icon also brings it
to the front.

Sending a window to the back
Clicking Select on a window’s Back icon sends that window to the ‘back’ of the
desktop, hiding it behind any windows it currently obscures or overlaps. This is
handled by the Wimp.

Closing a window
The effect of clicking on the Close icon of a window depends on which mouse
button is used and whether the Shift key is pressed at the same time:
28

Windows
The functions associated with Select are handled by the Wimp. Your application
needs to supply the functions associated with Adjust.

Whenever a window is closed and there is unsaved data, the application must offer
the user the chance to save the data before closing the window. For details of what
to do with editor windows containing unsaved data, see the section entitled Closing
windows on page 63.

There is more about the pinboard in the section entitled The pinboard on page 10.

Iconising a window
If a user clicks on the Close icon with Select while pressing the Shift key, or clicks
with Select or Adjust on the Iconise icon, the window is reduced to an icon stuck on
the pinboard. The file name is shown beneath the icon, which looks like this:

The small icon within the border is application-specific.

Double-clicking with Select on the icon on the pinboard must reopen the window,
preserving any unsaved edits and displaying the same area of the file as when the
window was iconised.

Iconising a window is handled by the Wimp, but your application can respond to a
user iconising a window, and may supply an alternative, application-specific
iconised sprite. The small icon within the iconised window icon must be
application specific. See the section entitled Sprites for iconised windows on page 105.

Mouse button Without Shift With Shift

Select Close the window
Reduce the window to an icon and pin it to

the pinboard

Adjust
Close the window; open its

parent window at the front of
the desktop

Open its parent window; don’t close the
original window
29

Resizing a window
Resizing a window
A window will always open with a standard size. This is some sensible default that
you set. Thereafter, window resizing is handled by the Wimp. If the user
subsequently resizes the window by dragging the Adjust size icon, this becomes
the new ‘standard’ size.

Dragging the Adjust size icon with either Select or Adjust resizes the window,
subject to the constraints of a ‘maximum’ size. If Select is used, the window is first
brought to the front. If possible, the maximum size shows everything over which
the window can be scrolled. If this will not fit on the screen, the maximum size fills
the screen instead.

Clicking Select or Adjust on a window’s Toggle size icon toggles its size between a
maximum size and a standard size. If Select is used to toggle the size of the window
to its maximum it is also brought to the front, but its old depth is remembered. If
the window is subsequently toggled back to its standard size, it resumes this
depth.

Clicking on the Toggle size icon with the Shift key held down resizes the window so
that it occupies the whole of the screen except the icon bar (or as much of the
screen as it needs to show its full extent, if it isn’t large enough to fill the screen).

If the window reaches the edge of the screen during resizing it grows in the
opposite direction if possible – so if the window reaches the right-hand edge of the
screen, but there is space on the left, the window grows to the left to increase its
width. If your application window has a toolbox attached, it will have to handle
repositioning the toolbox itself (see the section entitled Toolboxes on page 67).

Moving a window
In RISC OS, a window can be dragged not just to the edge of the screen but almost
off the edge of the desktop. The position of the pointer on the Title bar determines
how far off the desktop a window can be dragged, as the pointer can’t move outside
the desktop. Moving a window is handled by the Wimp.

Windows with tool panes attached must move the panes too such that they track
the parent to which they are attached.
30

Windows
Scrolling a window
Normally, the Wimp handles window scrolling. This is what happens:

● Clicking Select on a window’s scroll arrow scrolls the window (effectively
scrolling through the contents of the window) in the direction the arrow
points, and by an appropriate amount. For example, text files scroll by one line
of text, taking account of the font size in use. Clicking Adjust on a scroll arrow
scrolls the window in the opposite direction.

● Clicking Select on a window’s scroll bar (not its slider) scrolls the window by
approximately the height/width of the window, as appropriate. Again, clicking
with Adjust scrolls the window in the opposite direction. There is a small
overlap between successive window views, so that it is clear how the new view
relates to the previous view. For example, if you scroll a window down over
some text, the last line of the old view will be the first line of the new view.

● Dragging a window’s slider with Select scrolls the window in the direction of
the drag, and by an appropriate amount. The amount reflects the proportion of
the whole document visible in the window and how far the slider is dragged.
Dragging the slider with Adjust scrolls the window in both dimensions at once
(sideways and up and down).

A window cannot scroll past any natural limit, such as paper limits or the end of a
file.

The length of the slider represents the proportion of the whole file that is currently
visible in the window.

Nesting a window
The Nested Window Manager offers enhanced facilities for application design
including the ability to place child windows inside a parent window. The following
illustration shows an example with two children nested inside one parent.
31

Context-sensitive pointers
The Wimp will handle much of the management of the child window position when
the parent window is moved or resized using the same events as for a non nested
window.

The extra facilities for applications that are enabled by a Nested Window Manager
are:

● Nested windows. A parent window may contain any number of child windows
within it, and each child exists in an imaginary window stack just as the parent
window does in the desktop as a whole.

● Zero sized work areas. Prior to this version, the Wimp would impose a
minimum size for a window even if zero was chosen in the Templates file, this
was to ensure the scroll bar and scroll arrows could always be seen. The
Nested Window Manager will instead shrink the scroll bars when the adjust
size icon is moved to accommodate the request until they are too small to
show, then the scroll arrows will be similarly reduced.

● Borderless windows. It is possible to turn off the 1 pixel window border and
keep the icons from around the window showing, if a floating scroll bar is
needed for example.

● Furniture windows. These are child windows that can displace a parent’s scroll
bars. The window stack is redrawn such that furniture windows are topmost,
with the parent’s window furniture underneath, then normal (non furniture)
child windows at the bottom, clipped by their parent’s outline. This can be
used to embed a status area or extra custom button icons in the window
furniture of the parent.

Applications must not use a large parent window to take over the entire desktop,
only to then present smaller child windows within it. Applications must share the
desktop and open windows in accordance with the design details stated in the
section entitled Windows on page 105.

Context-sensitive pointers
You may want to change the shape of the pointer while it is in a window, or over
some type of item in a window, to indicate to the user the sort of activity that is
available. Examples of this include changing the pointer to a caret in a text
window, or to a menu shape when it is over a button that leads to a menu. Used in
moderation, context-sensitive pointers can help users to find their way around
your application. However, over-use can be confusing and looks messy.
32

Windows
If you want to use context-sensitive pointers, use the following established set of
pointer shapes:

Write for writable icons and text areas.

Hand for moving objects such as frames and windows – but not for dragging
objects such as icons when the precise drop point is important, since icons
are obscured by the hand shape.

Auto scroll show that the pointer is within the auto scrolling zone near the
edge of a window. There are also pointer shapes provided for just horizontal
and just vertical scrolling - the Filer uses this when extending a selection.

Menu to emphasise that gadget under the pointer leads to a menu. The use
of pop up menus is covered in the section entitled Pop-up menus on page 57.

Drop is associated with the ‘drag-and-drop’ method of selection which will
eventually complement the cut and paste method. Drag and drop is
described in the section entitled Drag and drop on page 81.

Dragging objects that are within a window
The Wimp’s drag operations are specifically for drags that must occur outside all
windows. As well as using the cycling dashed box form, you can define your own
graphics to drag objects between windows.

If you allow drag operations within your window, check that redraw works correctly
when windows move at the same time as the drag is in progress, such as if the
window is automatically scrolling beneath the pointer. During a drag operation:

● You can choose whether to allow the user to drag the object out of the window,
or to restrict the dragged object to within the window. Normally the context
will tell you which is the sensible choice.

● If you restrict the dragged object to within the window, you must automatically
scroll the window if the object gets close to the edge of the window’s visible
area, and if more of the window lies in the direction of the drag (see below).

● If the drag works with the mouse button released then menu selection and
scrolling can happen during the drag, which you might find useful.
33

Taking over the screen
You may use the Shift key to modify the effect of the drag from a move to a copy, or
vice versa. A drag between windows without the Shift key should perform a copy. A
drag within a window without the Shift key should perform a move.

The user may regret beginning a drag; pressing Escape during a drag should cancel
the drag and restore the object to its original position.

Automatic scrolling

Within an editor window, selection by dragging over text or other objects should
cause the document to scroll if the user holds down the Select button and moves
the pointer near the edge of the window. So dragging near the right-hand border of
the window should move through the document to show objects to the right
(unless the window is already at its limit in that direction), and dragging over the
lower border should move forwards through the document to display objects lower
down (until it meets the end of the document). Dragging with Adjust to increase a
selection should also give automatic scrolling.

Once automatic scrolling has started, the user should be able to increase the
speed of scrolling by moving the pointer. Scrolling stops when the user releases
the mouse button, stops moving the mouse, or meets the natural limits of the
document. The pointer is never artificially repositioned.

This mechanism allows users easily to select material that extends over more than
one window full of information. It also allows users of the ‘drag-and-drop’ method
of moving and copying selections to move through a document easily to the
destination for the selection. Drag and drop is described in the section entitled
Drag and drop on page 81.

Taking over the screen
You may feel very strongly that your application should be able to take over the
entire screen, without any scroll bars or other window paraphernalia. Usually, there
is no need for this to be the only method of operation, and you should make it
possible to run the application in a window, perhaps with an option to run it as a
single task. There is a model of how this can be handled in ‘Acorn PC Soft’
emulator: single screen operation can be chosen from the application’s icon bar
menu.

All applications should install an icon on the icon bar, even if they may be run as a
single task taking over the screen. The application should start up when the user
clicks on the icon on the icon bar. You may allow the user to make any settings
specific to your application from an item in the icon bar menu. This may include
redefining keys and loading saved data, for example.
34

Windows
The application needs to provide an easy way of returning to the desktop. Pressing
either of F12 or Escape should return the user to the desktop, and your application
should support both of these unless you have given Escape an application-specific
function. If you offer a menu option to return the desktop, this should be called
Return to desktop and not Quit or Exit. The application should operate in a
window once it has returned to the desktop. The desktop should be in the state in
which the user left it. Your application must not alter any configuration settings
without first asking the user to confirm that it may, and must never change CMOS
settings.

If there is insufficient memory available to run your application, it must display a
suitable error box and not try to free memory by altering the configuration of the
computer or doing anything which may cause the user to lose data. Always give the
user the opportunity to save any data which may otherwise be lost.

If you are writing a game, you may want to allow users to save the state of play. It is
best to offer this as an option from the icon bar menu, allowing the user to drag the
file icon to a directory display in the usual way.

There is an Application Note for games writers, called AN202 - Writing games for
RISC OS which contains further guidance.
35

Taking over the screen
36

8 Menus
Introduction
When different developers use very different menu structures, it is difficult for
users to find their way around new applications. To help overcome this, this Guide
suggests a basic, general-purpose structure for main menus which can be adapted
to suit many types of application, and offers some guidelines on menu design in
general. You should follow these to help users come to grips with your
applications.

The Wimp enforces some aspects of menu behaviour, so some of the information
included here is provided for completeness. For more details, see the chapter
entitled The Window Manager in the RISC OS Programmer’s Reference Manual.

Basic menu operation
Your application must provide a single menu tree for each window type that needs
menus, and an icon bar menu. A menu must be displayed when a user presses
Menu within one of the application’s windows that has a menu tree. This is better
than using a collection of short menus, associated with different places in the
window: a single menu is easier to learn about than lots of small ones, and users
can quickly discover what your program can and can’t do without having to search
everywhere for hidden menus.

You can, however, make menu items context-sensitive. Context-sensitive menus
have one or more items that change according to the object beneath the pointer
when the menu is displayed or according to what object(s) are selected when the
menu is displayed.

The user must be able to move all menus, submenus and dialogue boxes by
dragging them. The Wimp handles the movement of menus.

Displaying menus

A menu must appear at the position of the pointer when the user presses the Menu
button. The main menu must appear when a user presses Menu with the pointer
inside a window belonging to your application. The icon bar menu must appear
when the user presses Menu with the pointer over your application’s icon on the
icon bar.
37

Basic menu operation
Options that lead to submenus are indicated by an arrow to their right. A user must
be able to display a submenu by moving the pointer to the right over an item that
has an arrow beside it. When automatic menu opening is enabled the Window
Manager will instead open the submenu after the pointer hovers over the item for
a configurable delay.

If a menu item is not available because of the context in which the user has
displayed the menu, it must be greyed out (not omitted). Also, grey out any item
that leads to an unavailable dialogue box.

Grey out any items that don’t do anything in the current context. Don’t grey out a
menu item that leads to a submenu but show it in black, even if all items on the
submenu are unavailable. This allows users to see quickly all the options your
application offers, even if they aren’t currently available.

Choosing menu items

A user must be able to press with any mouse button on a menu item to choose that
item, unless it leads to a submenu. The application must perform any associated
activity, which may be a task, or it may be to open a dialogue box. If the user
presses Select or Menu to choose the item, the menu must then disappear. If the
user presses Adjust, the menu tree must remain displayed so that the user may
choose extra items.

If a user presses any mouse button on a menu item that leads to a submenu, the
application should either do nothing, or should do some sensible default available
on the item’s submenu – for example, clicking on a Save item should save a
document using its existing pathname (if it has one). The application may display
a dialogue box if necessary: for example, if a user clicks on a Save item for a
document that has not yet been saved, the Save dialogue box may appear.

A menu entry should have an ellipsis rather than an arrow if it leads to a persistent
dialogue box (one that remains on screen until explicitly dismissed by the user).
This means that the user has to select the item to display the dialogue box. There
is more on dialogue boxes in the next chapter. A menu item should never have
both an ellipsis and a submenu arrow.

Removing menus

If a user clicks anywhere outside a menu, the menu is removed from the screen and
the click is obeyed. The user may also press Escape to remove the menu tree
without making a choice; this function is provided by the Wimp.
38

Menus
Menu structure
Very long main menus and submenus are cumbersome and complex for users to
deal with. As a general guide, you should strive for a balanced overall structure,
with items that are needed frequently not hidden deep within a system of
submenus.

The following example of a main menu structure might be suitable for some
applications; it is intended as a guide only, not a set of rules you must follow.

Many applications will need to offer the items File, Edit and Utilities; many will
need one or both of Effect and Style, or suitable application-specific alternatives.
The main menu items will probably lead to submenus offering tasks of related
type. Some menu items that appear in many applications should be handled in
standard ways to increase consistency and ease of use. These are described in the
section entitled Standard menu items on page 42.

File menu

The File menu will typically look like this:

These are all standard items that are described in the section entitled Standard
menu items. You may want to include some other options that relate to the whole
document. Any options that relate to the application (that is, to all documents)
should be included in the icon bar menu and not the File menu.
39

Menu structure
Edit menu

The Edit menu should contain all the main functions of your application. From it,
users should be able to see what the application can do. Obviously the entries will
be determined by the functionality of your application; the illustration below is
just a guide.

An Undo function is very useful to users and you should include this if possible
(and appropriate). Undo and Redo should be the first two entries in the menu.

Effect menu

The Effect menu should offer simple functions to change the appearance of text (or
whatever). A typical example is shown below; if you use these items, you should
use the same names and give them in the same order as far as possible.

If there is a selection current when the user picks an effect, the effect should be
applied to the selection. If there isn’t a selection, it should be turned on to apply to
subsequent input.
40

Menus
Style menu

The Style menu should offer more complex settings such as combinations of
effects and additional features. Typically, it will offer some general operations and
some user-defined styles.

Utilities menu

The Utilities menu generally holds items that don’t fit naturally elsewhere in the
menu structure. However, check carefully that each item you think of putting in
Utilities should really be there; don’t use it as an alternative to devising a proper,
logical menu structure.

Toggling menu items

Sometimes you will want to offer in the menu structure a setting that can be
toggled on and off. There are three ways of doing this. In order of preference, they
are:

1 Have one menu item that is ticked when set on and not ticked when set off
(Use Palette, for example).

2 Have a context-sensitive menu item that changes to show the state that can be
selected (Show graphics when graphics are hidden, and Hide graphics when
graphics are shown, for example).
41

Standard menu items
3 Have two menu items with opposite functions (Show graphics and Hide
graphics, for example) and grey out the option that is currently in use.

It is worth considering whether the option would be better included in a dialogue
box. There are guidelines on presenting choices like these in dialogue boxes in the
section entitled Standard components in dialogue boxes on page 52.

Dialogue boxes and writable fields

Writable fields in menus are not particularly easy to use, especially for users who
have difficulty controlling the mouse. Use a small dialogue box in place of a
writable field coming from a menu item. Dialogue boxes are easier for the user
than writable fields as it is possible to click to place the caret. A small dialogue box
should typically have a field for text and an action button, such as Save or Modify;
OK is acceptable as long as the context makes its meaning absolutely clear. Where
sensible, try to maintain the text that has been previously entered in the text field.
There is more detail about the design of dialogue boxes in the next chapter.

Adapting the menu structure

Even if your application can’t use exactly the structure we have outlined here for its
menu tree, try to keep close to it, particularly for the main menu and the common
features of the File menu. Users will come to expect this as the model for the main
menu in all new applications, and they will find your application easy to learn if it
follows the model.

Standard menu items

File menu

Info should lead to a dialogue box showing information about the current file; it
should not display application information, which is displayed from Info on the
application’s icon bar menu.
42

Menus
Save should lead to a Save dialogue box which offers saving a selection (if there is
one) as an option, and shows a file icon for the application’s natural file type. The
Selection button is faded if there is no selection, and is always turned off when the
dialogue box appears; this prevents users accidentally overwriting the whole file
with a selection. Dialogue boxes are described fully in the next chapter. The Save
dialogue box with a selection button available should look like this:

Incorporating the selection option into this dialogue box saves space in the menu
tree and helps to rationalise the structure of menus. The use of the Selection
button avoids the need for a Save item in a Selection submenu or a Select item in
a Save submenu, which was a source of inconsistency in many older applications.

If it is possible to save a file or selection using other filetypes, the menu should
include an Export item, leading to an Export dialogue box or a submenu if there
are several alternative file formats available. A menu of filetypes will typically look
something like this:

Each filetype item should lead to an Export dialogue box with the appropriate file
icon shown. You should put the more commonly used filetypes at the top of the
menu, and any unusual ones at the bottom, separating the two groups with a
dotted line if appropriate. Only include a submenu Other for more unusual
filetypes if your application offers so many file formats that the Export submenu
becomes unwieldy.

There is more about the design of Save dialogue boxes in the section entitled Save
on page 58.
43

Standard menu items
If a user clicks on the Save item in the File menu, the file should be saved using the
default filetype. If it has been saved in that format previously, it should be saved
with the same name; if it has not, display the appropriate Save dialogue box. Some
users like to be warned before overwriting an existing version of a file with a new
version; others find such warnings irritating. If your application issues warnings,
make it an option that users can set on or off as one of the application’s choices.

Print should lead to a dialogue box allowing the user to make choices such as how
many copies to print. By default, the whole document will be printed, but you can
offer options to print the current selection (if there is one) or a page range.

Edit menu

If your application uses the Cut/Copy/Paste method of moving and copying
selections, you will need to include each of these items in the Edit menu.

The cut and paste method requires an application to keep a clipboard on which cut
or copied items are stored until the user pastes them back in or closes down the
application. Instead of a single operation, two stages are needed to cut or copy and
then paste a selection.

Cut removes the selection from the document and stores it on the clipboard.

Copy makes a copy of the selection and stores it on the clipboard. The selection in
the document remains in place.

Paste pastes the current contents of the clipboard into a document at the position
of the caret, or replacing a selection current in the document.

The cut and paste method of copying and moving objects or text has now
established itself as the industry standard. You should use it in preference to the
model of highlighting text in a block and then positioning the caret at the input
point and using a Copy or Move menu item. The latter model has been replaced
because retaining a current caret and a current selection confuses many users.

In the future, cut and paste is likely to evolve into a ‘drag-and-drop’ method which
will allow the user to make a selection and then drag it with the pointer to its
destination. This is outlined in the section entitled Drag and drop on page 81; there
is more about cut and paste in the section entitled Cut and paste on page 80.

Effect/Style menu

Font selection makes it easy for users who want to make a change to text in several
fonts, perhaps changing it all to italic or all to bold.
44

Menus
The following menu structure gives users the option of changing just the weight or
style of the font, or of making a fully controlled font change.

The menu items Bold and Italic will work over a selection that includes several
fonts:

● The menu item Bold will be ticked if any of the selected text is in bold, or if
there is no selection but bold is turned on at the position of the caret.

● The menu item Italic will be ticked if any of the selected text is in italic, or if
there is no selection but italic is turned on at the position of the caret.

The menu items have the following effects:

● If Bold is not ticked and the user clicks on it, all selected text in any font will be
changed to bold (retaining the same typeface(s) and angle(s)); if there is no
selected text, bold will be turned on at the position of the caret.

● If Bold is ticked and the user clicks on it, all selected text in any font that is
currently emboldened will be changed to medium (retaining the same
typeface(s) and angle(s)); if there is no selected text, bold will be turned off at
the position of the caret.

● If Italic is not ticked and the user clicks on it, all selected text in any font will
be changed to italic or oblique (retaining the same typeface(s) and weight(s));
if there is no selected text, italic will be turned on at the position of the caret.

● If Italic is ticked and the user clicks on it, all selected text in any font that is
currently italic or oblique will be changed to upright (retaining the same
typeface(s) and weight(s)); if there is no selected text, italic will be turned off at
the position of the caret.

Colour selection may be of two types. Selection of ‘true’ colours which may be
precisely defined and stored and printed with a suitable printer, but not necessarily
accurately displayed on screen, should be from a dialogue box. The standard
45

Appearance of menus
dialogue box for picking colours is described in the section entitled Selecting colour
on page 60. Selection of desktop colours for display may be from a dialogue box or
a submenu of colours (as Edit’s text and background colours are selected).

Icon bar menu

The icon bar menu for your application must have at least two items: Info and Quit.

Info displays a dialogue box showing information about your application. It should
be similar to this, but you can make slight modifications:

Whenever you release a new version of your application, make sure it has a new
version number in its Info box for customers to easily refer to, along with a
hyphenated release date as shown.

Quit removes your application from memory. It must first check that there are no
unsaved documents, and use the dialogue box illustrated in the section entitled
Closing windows on page 63 if there are.

The icon bar menu should preferably provide a Help... entry placed immediately
after the Info item which should run your application’s !Help file. Other icon bar
menu items then follow with Quit being last.

Appearance of menus

Text in menus

The following rules govern the use of text in menus:

● Items must have an initial capital, with the rest in lower case (ie ‘Set type’, not
‘Set Type’).

● Items must be left-justified (except for keyboard shortcuts – see the section
entitled Keyboard shortcuts on page 70).
46

Menus
● Items must use the current desktop font, which may vary based on the user’s
preferences. Design your menu first using the system font to ensure that any
keyboard shortcuts are right justified appropriately with soft spaces (character
32), then leave the Wimp to justify the menu when the current desktop font
uses an outline font.

● Items must (where relevant) use ticks to show they have been selected,
whether by the application as a default, or by the user as a conscious choice.

● Items may be split into groups within a menu by separating them with a dotted
line.

● A menu entry may be a sprite instead of text where this is appropriate.

Keyboard shortcuts

You may well want to offer keyboard shortcuts for some menu items. Details of the
keyboard shortcuts used for various functions are given in the section entitled
Keyboard shortcuts on page 70.

Pop-up menus
Sometimes you may wish to include a list of alternative choices within a dialogue
box, using a pop-up menu. The procedure for including a pop-up menu in a
dialogue box is described in the section entitled Pop-up menus on page 57. The icon
to show a pop-up menu looks like this:

A pop-up menu looks and acts in all respects like an ordinary menu. It has a Title
bar, by which it can be dragged around, and uses the same colours as an ordinary
menu and may have items greyed out.

Size and position of menus
For the details of the size a menu should be and how it should be positioned when
displayed, see the section entitled Menus on page 106.
47

48

9 Dialogue boxes and toolboxes
Introduction
Dialogue boxes are an important way in which users communicate with the
computer and give instructions to your application. It is vitally important that the
wording, function and layout of dialogue boxes is clear and easy to use. This
chapter gives guidance on aspects of dialogue box design and tells you how you
can make your dialogue boxes consistent and harmonious with other RISC OS
dialogue boxes. You will need to give careful consideration to how to present your
application’s functions and options within the protocol described here.

The dialogue boxes for some standard functions – such as Save, and selecting
colours – are described and illustrated. Use these standard dialogue boxes
whenever appropriate.

Toolboxes are another method of interaction, but one which has been under-used
in the past. They can cover a wide range of functions; the tools in Paint and Draw
are examples. Generally, they can remain on screen while an application is being
used, and do not disappear until dismissed by the user clicking on a Close icon or
choosing a menu item.

The Wimp enforces some of the behaviour of dialogue boxes. For more details of
how to construct and use dialogue boxes in your application, see the chapter
entitled The Window Manager in the RISC OS Programmer’s Reference Manual.

3D and dialogue boxes
RISC OS uses a 3D look and feel throughout, using a standard set of ‘gadget’ icons
provided by the Window Manager. All new applications must use these standard
icons from the Wimp sprite pool, and the 3D look and feel; any that use their own,
non-standard icons will look odd. The precise appearance of the gadgets may vary
depending on the theme in use, but their size is consistent so one design will suit
all versions. The sizes are detailed in the section entitled Size of dialogue boxes on
page 108.

It is not necessary to provide a 2D version of your template.
49

Types of dialogue box
Some windows are eligible for 3D borders around the entire window area too, when
the window flags in the template permit it and the user has enabled 3D borders in
the Window Manager setup. Allow extra space around the edge of the window to
prevent the borders from overlapping other elements of your design.

Types of dialogue box
There are two types of dialogue box:

● persistent dialogue boxes

● transient dialogue boxes.

Persistent dialogue boxes

A persistent dialogue box appears when the user clicks on a menu item that is
followed by an ellipsis (…) or performs an equivalent action (such as using a
keyboard shortcut). It usually suspends its parent application until it is filled in;
this is not an essential feature of persistent dialogue boxes, but it is easier to
implement.

A persistent dialogue box has at least one action button (such as Save or Cancel).
It must not have a Close icon, but has a Cancel action button instead; it is not
clear to a user whether any settings chosen will be implemented if he or she clicks
on a Close icon. A persistent dialogue box appears after a user clicks on its parent
item in the menu tree, which must have an ellipsis after it – so Style... is an
example.

A persistent dialogue box is not removed from the screen if a user clicks outside
the dialogue box.

Transient dialogue boxes

A transient dialogue box appears as a submenu, and functions in the same way –
the Save dialogue box is an example. It has at least one action button (such as
Save or Cancel) but no Close icon. It is typically small, to make it easy to browse
through the functions an application offers. It is removed from the screen if the
user clicks a mouse button or moves the pointer back over the menu tree.

A click outside a transient dialogue box removes the dialogue box without taking
any action.
50

Dialogue boxes and toolboxes
Acting upon choices

Both types of dialogue box should be characterised by delayed action: the user has
to make choices and then click on OK (or some other appropriately named action
button) before the choices take effect. This contrasts with the instant effect of, for
instance, dragging a scroll bar. Toolboxes, such as that used by Paint, have an
instant effect. Toolboxes are described below in the section entitled Toolboxes on
page 67.

Where a choice is offered do not include a close icon on the dialogue box as this is
confusing for users whether their selection will be cancelled or acted upon. Some
of the dialogue boxes in the version of Configure that was supplied with RISC OS 3
didn’t conform to this rule

Deciding which type of dialogue box to use

Whenever possible, use small transient dialogue boxes rather than persistent
dialogue boxes.

Sometimes you may need to use a persistent dialogue box because of technical
restrictions – for example, you can’t use a transient dialogue box if you want the
dialogue box:

● to have menus of its own;

● to have panes;

● to have icons dragged onto it, or to remain on screen when any other mouse
input is required.

It is also better to use a persistent dialogue box if, displayed from the menu, the
dialogue box would be large enough to obscure the menu that called it up.

Dialogue boxes and keyboard shortcuts
A dialogue box must work in exactly the same way whether it is opened from a
menu or using a keyboard shortcut.
51

Default actions
For full details of using keyboard shortcuts, see the chapter entitled Handling
keyboard input on page 69.

Default actions
If a dialogue box has a default action it should be clear what this is. The default
action should do what the user probably intended as long as this is safe. For
example, if a user has edited a file and tries to close it without saving it, the default
action should be to save the file before closing it. The file is closed – as intended –
but the user doesn’t lose the new data.

The default action should be performed if the user presses Return. Escape must
perform the same function as clicking on Cancel. A dialogue box must take the
input focus when opened and whenever the user clicks on its window so that
Return and Escape work.

The dialogue box must remain on screen if the user clicks on an action button
using Adjust.

Standard components in dialogue boxes
There are various standard components that you may need to use in dialogue
boxes:

● writable fields

● display fields

● action buttons

● option buttons

● radio buttons

● adjuster arrows

● sliders

● scrollable lists

● pop-up menus

● standard selectors (for colour, font and view scale).

The sections below explain how and when to use each of these; the chapter
entitled Implementing the design on page 101 explains how to implement each of
them.
52

Dialogue boxes and toolboxes
Writable fields

Writable fields are used when the user has to type text to give a value or name. Use
either validation strings or your own filtering code to make sure the field accepts
only legal strings. A writable field looks like this:

The user may want to use any of the following keystrokes within a dialogue box
with writable fields, and your application should support all of them:

When the user moves to a new writable field, your application should place the
caret at the end of any text already in the field. The Wimp will automatically place
the caret in this manner if it is managing keyboard navigation between icons in the
dialogue box for icons using a validation string ‘Ktar’ or similar.

Key Function

← Move the caret to the left one character position.

→ Move the caret to the right one character position.

↓ or Tab Set the value in the current field and move the caret to
the end of the next field (cycling from last to first if
necessary).

↑ or Shift-Tab Set the value in the current field and move the caret to
the end of the previous field (cycling from first to last if
necessary).

Return Implement the current settings and remove the dialogue
box from the screen. The action button that corresponds
to the Return key should have a thicker border than the
others.

Escape Cancel the operation and remove the dialogue box. Data
must not be lost, and the environment must revert to the
state it was in before the dialogue box was opened. Each
dialogue box must have a Cancel button that is
equivalent to pressing Escape.
53

Standard components in dialogue boxes
Display fields

Display fields are used to show information the user can’t change by typing in the
field, so the caret doesn’t appear in the field. You can use it to show settings that
can be altered using other elements in the dialogue box, settings that can’t be
changed from the dialogue box or settings that are updated automatically.

Action buttons

An action button is a ‘button’ users click on to cause an action to occur – usually
the user will have made some settings in the dialogue box that relate to the action.
An example is the Save button in a Save dialogue box; the user will have chosen a
pathname for the file (which may be its existing name) and clicks on Save to save
the file.

Try to use simple active verbs to label action buttons – for example, Save or Print.
Don’t use Yes and No. It must be clear from the label and the context within the
dialogue box what the result of clicking on the button will be. Make sure the label
is never ambiguous.

Most dialogue boxes will have at least two action buttons, one of which will be
Cancel. The other(s) will offer different actions.

Always put the default action button in the bottom right-hand corner of the
dialogue box, and use the thick border to make it prominent. It is usual to line up
the other action buttons along the bottom of the dialogue box, but in some cases
you may want to align them vertically down the right-hand side of the dialogue box
or use some other appropriate arrangement. The action buttons should be evenly
spaced along the edge they occupy.
54

Dialogue boxes and toolboxes
Clicking on any action button with Select removes the dialogue box from the
screen and implements the chosen action. Clicking on an action button with
Adjust leaves the dialogue box on screen and implements the chosen action.

Option buttons

An option button is a ‘switch’, and can either be on or off. Option buttons look like
this:

Any associated text must be to the right of an option button. Pressing either Select
or Adjust over an option button or its text must toggle its state.

Only use an option button if changing the state of the button won’t affect any other
settings. If the current settings make an option meaningless or unavailable, its
option button must be faded.

You should use option buttons when the user may pick more than one of the
options; if the options are mutually exclusive, so that only one can be used at a
time, use radio buttons.

Radio buttons

A radio button is one of a group of mutually exclusive buttons: only one may be
selected at once, and clicking on one turns off the currently set button. Radio
buttons look like this:

Any text associated with a button must be to the right of the radio button. Pressing
either Select or Adjust over a radio button or its text must select it, and deselect
any other radio button in the group that was previously selected. If there is an
option to turn off all the buttons, give this as a radio button labelled None, as one
button must always be on.

If there are only two settings available (such as Hide graphics/Show graphics) and
this is the only option set from the dialogue box, a ticked or unticked menu item is
simpler for the user than radio buttons in a dialogue box. Ticked menu items are
described in the section entitled Toggling menu items on page 41.
55

Scrollable lists and pop-up menus
Adjuster arrows

An adjuster arrow is used to increase or decrease a numeric value; it is used for
setting a Zoom value in Draw or Paint, for example. It may be used in conjunction
with a slider (described below). The up and down adjuster arrows look like this:

The user must be able to click with Select on an up arrow to increase a value and
on a down arrow to decrease a value. It must also be possible to reverse the action
of the buttons by clicking with Adjust. This means that clicking on an up arrow with
Adjust decreases the value and clicking on a down arrow with Adjust increases the
value. It is important to support this apparently superfluous option as some users
have physical difficulties using the mouse, or may be using an alternative input
device that assumes this action is possible.

Sliders

A slider is another method of altering a numeric value. It is particularly useful
where a wide range of values is possible, or where the user is unlikely to know the
exact number required. The proportions of red, green and blue in a colour would be
a typical example.

A simple slider looks like this:

You may want to use a more complex type of slider; you can add a knob or handle
to a slider that may be dragged.

Pressing Select must move the slider in one direction and pressing Adjust must
move it the opposite way. So if pressing Select on a left button moves a slider to
the left, pressing Adjust would instead move the slider to the right.

Standard selectors

Some settings are so commonly made in applications that it is helpful to users to
have a standard method of selection. There is a standard selector for colour; this is
described in the section entitled Selecting colour on page 60.

Scrollable lists and pop-up menus
Sometimes you may wish to include a list of alternative choices within a dialogue
box. There are two ways you can do this: scrollable lists, and pop-up menus.
56

Dialogue boxes and toolboxes
Scrollable lists

A scrollable list shows several of the available choices in a scrolling pane with one
or more of the mechanisms for scrolling: scroll arrows, scroll bar and slider. These
work in exactly the same way as in an ordinary window (see the section entitled
Scrolling a window on page 31). The selected choice in the list is highlighted; the
current selection must be visible when the window is first displayed. Users can
drag the scroll bars to move through the list, find the choice they want, and then
click Select to make a choice. If it is possible to choose more than one item at the
same time, the user must be able to click with Adjust to add extra items to the
selection. Clicking with Adjust on a selected item deselects it.

Pop-up menus

A pop-up menu takes up less space within the dialogue box than a scrollable list.

A pop-up menu is indicated by a button beside the field showing the current
selection:

Clicking on the menu button with either Select or Menu brings up the pop-up
menu, which then works in the same way as an ordinary menu.

There is more about pop-up menus in the section entitled Pop-up menus on page 47;
the section entitled Pop-up menus on page 107 explains how to position a pop-up
menu.

Standard dialogue boxes
Some options are offered by many applications and we can achieve a greater
degree of consistency on the desktop if all developers offering these options use
the same dialogue box to make settings.

Use the dialogue boxes or guidelines described below if you need to support these
functions:

● Print

● Save

● View scale

● Find/replace

● Colour selection

● Font selection

● Closing a window which may contain unsaved information.
57

Standard dialogue boxes
Print

Printing may be a simple or a complex operation depending on the type of
application. If you are offering a simple screen-dump type print, you will need to
show the printer driver loaded and allow the user to set the number of copies to
print. If at all possible, include a scale option as well; typically, this will let the user
set the print size by giving a percentage of full size. Use a dialogue box like this,
showing the name of the configured printer in the Title bar:

If printing is very important to your application, you will want to let the user set
many more options. Here is an example of a more complex dialogue box for Print:

Make it easy for non-expert users to make settings. For example, use the terms
‘upright’ and ‘sideways’ instead of ‘portrait’ and ‘landscape’ for page orientation,
and consider illustrating the options with an icon. (For some products and some
markets, this type of simplification may be inappropriate.)

Save

A Save dialogue box looks like this:
58

Dialogue boxes and toolboxes
If there is a selection in effect when the user calls up this dialogue box, and it is
possible to save the selection, include a Selection button so that the user may save
just the selection.

When there is a selection, change the default pathname to Selection to prevent
users accidentally overwriting the whole file with a selection.

The button can be faded when there is nothing selected; the button is always
turned off when the dialogue box appears.

The file icon shown must be the right icon for the filetype being used. If you offer
saving as different filetypes, use the appropriate icon for the type the user has
chosen. The section entitled File menu on page 42 explains how to offer different
filetypes for saving.

If the file has already been saved using the filetype displayed in the icon, the full
pathname of the file must be displayed in the writable field. This enables the user
to click on Save or press Return to save the file with the same name, or edit the
name in the field to save it with a different name. If the file has not been saved
previously, the name in the field should be the same as the default name for the
file shown in the Title bar. Providing a default name allows the user to drag the file
icon to a directory display immediately without generating an error message. When
the file has been saved, the name in the Title bar is updated to the new filename
and the * removed until further changes are made to the document.

The writable field in a Save dialogue box must be able to accommodate pathnames
up to 255 characters long, and have a validation string of ‘A~ ’, so that spaces
cannot be included in the pathname. The field must not accept a pathname longer
than 255 characters.
59

Standard dialogue boxes
Scale view

If the user can scale the view, use a dialogue box like this:

You may offer different scales on the action buttons, and a different number of
standard scales, depending upon the requirements of your application. Clicking on
one of the buttons offering a value should enter this value in the writable field but
not add an automatic Return; the user must still click on an action button or press
Return to initiate rescaling.

It is useful to users to be able to define a box on screen by dragging with the
pointer to show the area of the screen they would like to look at in detail. This area
is then rescaled to fit the window.

Find/Replace

The options you want to offer as part of a find/replace facility will depend on your
application and how you expect users to use it. The following illustration is a
guideline only.

It is a good idea to allow a search to be case sensitive, and to allow users to restrict
it to a selection or some other sensible subset of the whole file. However, searches
should be case insensitive by default, with case sensitive as an option.

Selecting colour

There are four common ways of defining colours:

● RGB, or red-green-blue

● HSV, or hue-saturation-value
60

Dialogue boxes and toolboxes
● CMYK, or cyan-magenta-yellow-key (black)

● Instant selection of desktop colours.

Computer monitors make colour by mixing varying amounts of red, green and blue
(RGB). The colour we see is the result of adding proportions of each of these
colours. To define colours using this method, we need to specify the proportions of
red, green and blue displayed on the screen; this is what the RISC OS palette does.

Most users find the RGB colour selection method easy to use and this is the
operating system’s own method of defining colours. Using it in your applications
increases the consistency of the desktop. If your application needs HSV or CMYK,
you can of course use these. If possible, though, offer RGB as an option for users
who are not familiar with other methods of colour definition and give full
documentation of how to use the others.

A colour picker looks like this:

It offers users four methods of adjusting the value of each colour component:

● Sliders

● Writable fields

● Interactively clicking on the colour swatch

● Adjuster arrows.

The values for each colour are shown as percentages, not 256ths, which is much
easier for users. It is ideal where simple colour definition is required; you may
prefer to offer HSV and/or CMYK if colour selection is particularly important (as it
may be in a graphics application, for example) or if it may be relevant for output (if
the user may be preparing colour separations, perhaps).
61

Standard dialogue boxes
Selecting fonts

Font selection is sometimes of great importance in an application; often it is just a
fairly basic setting that is not crucial to the function of the application. Font
selection can be intimidating for users, and it is best to provide emboldening and
italicisation separately from font selection. For example, a user may decide to set
some text in bold. Choosing Homerton.Bold from a long menu listing all the fonts
available in the Fonts directory is an unnecessarily technical procedure that may
discourage inexperienced users from using different effects. It also doesn’t allow
the user to set the whole of a piece of text that uses more than one font to be
emboldened in a single action. While it is important to retain a mechanism for full
control over fonts for experienced users, there is a need to provide a simple way of
applying bold and italic effects to help inexpert users make the most of
applications.

There is a suggested menu structure for font selection in the chapter entitled Menus
and you should use this for font selection through the menu tree. This is suitable
for minor changes the user may want to make while typing. Sometimes, though,
you may want to offer font selection from a dialogue box. This is more suitable
when the user is likely to be making several settings, such as when defining styles.
In this case, use this standard selector:

This is quite easy for users to use as bold and italic effects are set after the font has
been chosen. A selection of standard sizes is offered and you may like to include a
writable field for users to give a different size. Don’t offer height and width settings,
but use aspect ratio instead to adjust the proportions of text. This uses the fixed
height of the chosen point size, but alters the width to give the proportion
specified. For example, an aspect ratio of 50% will give characters that are half their
normal width.
62

Dialogue boxes and toolboxes
The Try button allows users to check that they have chosen what they really want
before applying it to their text. It must show text in the chosen font, effects (if any)
and aspect ratio.

When it isn’t obvious that the dialogue box is a better means of font selection, use
the menu structure suggested.

Closing windows

If your application is an editor of any type, it is possible that a user may click on the
Close icon of a window that contains unsaved information. If this happens, your
application must not close the window and discard the user’s work without
warning, but must display a dialogue box like this, giving the user the chance to
save the file, discard the work done in the window, or cancel the operation leaving
the window open.

There is more about the wording used in this dialogue box in the section entitled
Wording of dialogue boxes on page 65.

Appearance of dialogue boxes
The chapter entitled Implementing the design on page 101 explains how to create and
position the elements of a dialogue box.

Size of dialogue boxes

First and foremost, strive to make your dialogue boxes small, simple and
comprehensible for first time users. A whole screenful densely packed with
controls is likely to discourage and intimidate the user. Think through which
operations are easiest to understand and most commonly used and hide the
others away or remove them altogether. Don’t provide options which, in practice,
no one will use.

If you find that a dialogue box has to be very large to include everything that you
need to include, you will need to consider dividing it up in some way. The options
are to

● split up the task the dialogue box performs so that you can use more than one
dialogue box;
63

Appearance of dialogue boxes
● use action buttons to lead to further dialogue boxes;

● use a set of radio buttons to switch between different parts of a dialogue box;

● use pop-up menus to replace scrolling panes or radio buttons where
appropriate.

If you can’t avoid splitting up a dialogue box, action buttons are usually the best
method of providing extra options. Make sure that the most frequently needed
options or those most likely to be used or understood by a beginner, are at the top
level.

Grouping items

In a large dialogue box, you may like to group together all the items that relate to a
particular setting or subject. You can do this using a group box. This is a box that
encloses the related items, and has a label overlaying the top of the box:

Don’t over-use group boxes, so that everything in your dialogue box is grouped,
and don’t put just a single item in a group box. Don’t nest groups. If an entire
group is rarely used, consider making it a separate dialogue box.

Text

For labels and other text, ensure the bounding box is large enough to
accommodate the text when rendered in the system font, with Homerton Medium
at 12 point, and (preferably) with Trinity Medium at 12 point. Typically this will
require the box to be slightly longer than when using an outline font of the same
point size.

Do not use spaces to line up text, as the spacing will change depending on the font
the user has selected as their desktop font, use extra text icons to achieve column
alignment, as the Filer does.
64

Dialogue boxes and toolboxes
Wording of dialogue boxes
Remember that the point of a dialogue box is to enable users to make choices,
perform actions they want to perform and receive any feedback from the computer
about what they have done. Using clear, plain English will help users and will make
your application easy and pleasant to use.

● Don’t use ambiguous phraseology or wording on buttons, and make sure the
wording on or by any buttons is a valid answer to the question as you have
phrased it.

● Use wording the user will understand; avoid jargon unless you know your users
will understand it.
65

Wording of dialogue boxes
● Label the action buttons with an accurate description of their function – don’t
use Yes and No. Aim to use active verbs, such as Print or Save. If a dialogue
box has allowed a user to make many settings and a single active verb is not
appropriate, use OK rather than, for example, Yes or Go.

● Use the same sense for all options within a dialogue so that users can quickly
make their selection without having to work out double negatives.

See the section entitled Standard dialogue boxes on page 57 for details of the dialogue
box you should use when a user tries to close a document that has not been saved.

There is more information on action buttons in the section entitled Action buttons on
page 54.

Error messages

One type of dialogue box in which wording is particularly important is error boxes.
Your application will need to display an error message if the user attempts an
action that isn’t allowed, or if the application goes wrong or can’t find some
resource it needs.

All error messages should use simple, plain English with no jargon. Don’t include
diagnostic messages of help only to programmers, but tell the user simply what
has gone wrong and say what the user can do (if anything) to correct the situation.
If your application is reporting a potentially serious problem, make that clear, and
don’t obscure it with polite phrasing.
66

Dialogue boxes and toolboxes
Examples of suitable messages are:

Not enough memory to open a new window

No printer driver loaded: load a printer driver before
printing

Width must be less than 2.5cm

Please fill in the Value field

You can include a single number in brackets after an error message to help
programmers diagnose problems; don’t use messages such as ‘Illegal object
dereference at &00004A23’ which are intimidating and meaningless to users. Avoid
words such as ‘fatal’, ‘abort’, and ‘corrupt’, which can be very worrying for users. If
your application has crashed irretrievably, use a polite message that all users can
understand, such as:

Sorry, MyApp has suffered an internal error and must close
down immediately.

A short apology is acceptable (as in the last example); put it at the start of the
message, not the end. Don’t over-use apologies.

Toolboxes
A toolbox is a useful alternative to a dialogue box as a means of letting users make
choices within your application. A toolbox is appropriate if a user is likely to want
to make selections repeatedly, as they may from a toolset or palette. Toolboxes
have been under-used in the past, but offer a valuable, flexible and easy method
for users to make commonly-needed choices.

The Colours and Tools windows in Paint and the toolbox in Draw are typical
examples of toolboxes. A toolbox may be associated with a particular window – for
example Paint’s colours – or be shared by several windows, as Paint’s tools may be.
Toolboxes may be free-standing windows, as Paint’s Colours and Tools windows
are, or attached to another window, as Draw’s toolbox is. There are other
alternatives; a toolpane may be included as a row or panel of buttons within a
window, for example.

Toolboxes remain on screen until explicitly removed by the user or until the
application or window is closed down.
67

A toolbox in a pane can be turned on or off from a menu item; the menu item is
ticked when the pane is displayed. The pane disappears when a user closes the
window it is attached to.

A toolbox in an independent window has a Close icon, Back icon and Title bar like
any other window and may have scroll arrows, a slider and scroll bar, and an Adjust
size icon. A toolbox in its own window must be implemented as a standard
RISC OS window. It is displayed when a user calls it up from a menu and closed
when the user clicks on its Close icon or when the object it is associated with is
closed.

The buttons in a toolbox must be 3D, as in the Paint and Draw toolboxes.
68

10 Handling keyboard input
Introduction
Many applications will support text input in their windows; even those that don’t
will often need text input to dialogue boxes. This chapter explains how to handle
input from the keyboard, including keyboard shortcuts.

Gaining the caret
The caret is a single, red, I-shaped bar which shows where input from the keyboard
will appear. The window containing the caret is said to have the input focus. When it
first gets the input focus, sometimes called gaining the caret, the caret moves from a
different window to the new one. Your application may only gain the caret if:

● a user clicks with Select or Adjust inside your window

● a user calls up a menu or dialogue box

● a user clicks on the application’s icon on the icon bar to open a new document.

If the user clicks in an application window, the window has the input focus and
receives text input until the user clicks in a different window or calls up a dialogue
box or menu. The Title bar of a window changes colour when the window gains the
input focus. This is handled by the Wimp under the control of the window
template.

If the user calls up a dialogue box, the first field in the dialogue box will have the
input focus. In dialogue boxes that do not take text input, input is usually from the
mouse. However, it may still be from the keyboard, as users can use Return to
choose the default action icon and possibly other keys to choose other action
icons. Your application must surrender the caret when the menu or dialogue box is
closed. Normally RISC OS automatically reassigns the input focus. It is often your
application’s main document window that will regain the caret in these
circumstances.

A window should not automatically come to the front of the desktop when it gains
the caret. Similarly, if your application brings a window to the front of the desktop,
it should not automatically gain the caret. A window should not gain the caret just
because the pointer passes over it, but only when the user takes some definite
action, such as clicking in the window.
69

Unknown keystrokes
If your application loses the input focus, it doesn’t need to remember the position
of the caret or the selection. When the application regains the input focus, the
action the user takes (such as clicking in the window) may also place the caret. If
the user’s action doesn’t place the caret, the application should claim the input
focus but not position the caret in the document.

Unknown keystrokes
If your application receives a keystroke that it doesn’t recognise or can’t use, it
should pass it on to other applications using Wimp_ProcessKey rather than
claiming it. This allows other windows to provide hot key operations that work
anywhere; it also allows the Wimp to interpret function key presses if necessary. If
your application doesn’t pass on unknown keystrokes, F12 won’t work while your
application has the input focus.

Keyboard shortcuts
Using a mouse and pointer to choose items from a menu is not always the quickest
way to use an application. Many users, particularly experienced ones, like to have
keyboard shortcuts to access operations they use frequently. To avoid confusion,
common commands should have consistent shortcuts across different
applications.

● There is a small set of common function key shortcuts that you should use if
your application supports the functions. These are listed in the section
entitled Function keys on page 72.

● There are some common shortcuts that are alternative methods of choosing
menu items offered in many applications.

● Some keys on the keyboard have specific functions (such as the Print Scrn key);
your application should support their normal functions.

● There are some standard keys and key combinations to help users move
around files.

The tables over the following pages show the keyboard shortcuts you should use.
The left columns show the abbreviation for the shortcut – use this in your menus –
and the right columns give a description of what each shortcut does.

Whenever you offer a keyboard shortcut for a menu option, you need to show the
shortcut to the right of the item in the menu. Function keys must be referred to as
F1, F2, etc. following the labels on the key-caps. Unless you are offering only single
key-press shortcuts using the function keys, you will need to use these symbols for
Control and Shift in your menus:
70

Handling keyboard input
● ^ means hold down the Control key while pressing the other key(s) indicated,
e.g. ^X is Control-X.

● ⇑ means hold down the Shift key while pressing the other key(s) indicated, e.g.
⇑F3 is Shift-F3.

● ^⇑ means hold down the Shift and Control keys while pressing the other key(s)
indicated, e.g. ^⇑F3 is Control-Shift-F3.

The character code for ^ is &5E. The character code for ⇑ is &8B, and its equivalent
UTF-8 sequence is given in the table on page 97.

Typical menu entries would look like this:

Control and Shift

The Shift key is the natural modifier for any function key, so use this to provide
similar functionality to the unshifted key, but with some subtle modification. Use
the Ctrl key to provide different functionality. So for a function key Fn:

Alt

The Alt key is used by RISC OS as a shifting key to generate international characters
and in the future is likely to be used to support a revised system of keyboard
shortcuts more compatible with other non-RISC OS systems. Because of this, you
must not use the Alt key for keyboard shortcuts.

Key presses Action

Fn some function

⇑Fn a modified form of Fn

^Fn some other function (probably unrelated to Fn)

^⇑Fn a modified form of ^Fn
71

Keyboard shortcuts
Function keys

The function keys are often used to call up editing and filing operations within
applications. The table below shows the function keys you should use for some
operations that are common to many applications. Where a function corresponds
to one your application provides, you must use the shortcut below rather than any
other. If you don’t provide one of the functions below, you can use its shortcut for
some other function – but don’t allocate a different function to F12, Shift-F12,
Ctrl-F12 or Shift-Ctrl-F12 as these are all used by the operating system.

Menu shortcuts

There are several functions that many applications provide from their menus. To
build up consistency between applications and so help users find their way around
new programs quickly, all applications must use the same shortcuts for the same
functions. Some of these will be the function key shortcuts listed above, but others
use the ordinary keys with the Control key. You must use the following shortcuts if
you provide a shortcut for the functions listed in the table.

Abbreviation Action

F1 Help

F2 Load named document

⇑F2 Insert named document

^F2 Close window

F3 Save document

F4 Find/Search and replace

^F4 Search and replace, unless combined with Find
dialogue

F5 Go to…

F8 Undo

F9 Redo

F12 Give access to * Commands using the command line
interface – do not use this key for anything else

⇑F12 Bring the icon bar to the front of the desktop

^F12 Open a task window

^⇑F12 Shutdown

Key combination Action

^U Delete line

^C Copy selection to clipboard

^X Cut selection to clipboard
72

Handling keyboard input
The final two shortcuts must correspond to the font selection method described in
the section entitled Effect menu on page 40. There is some advice on keyboard
shortcuts and international support in the section entitled Language on page 95.
Where you need to refer to an arrow key in a keyboard shortcut, you will need to
give the name of the direction in full (for example ^Left for Ctrl-Left arrow). This is
because neither the system fonts nor the fonts used in later versions of the Wimp
have characters for the arrow keys.

Named keys

Several keys have their functions shown on the key-caps. It is confusing to users if
these keys do not do what they claim to do. Your applications must support the
following key-presses:

^V Paste clipboard contents at cursor position

^K Delete selection without affecting the clipboard

^D Insert date

^T Insert time

^A Select all

^Z Clear selection

^B Change selected text to bold

^I Change selected text to italic

Key Action

Esc Cancel operation

Return Begin a new line of text in an editor window. In a
dialogue box, perform the default action.

Print Scrn Print document

Tab Move to the next tab position in a text editor
window. In a dialogue box, set the value in the
current field and move the caret to the end of the
next field (cycling from last to first if necessary)

Shift-Tab In a dialogue box, set the value in the current field
and move the caret to the end of the previous field
(cycling from first to last if necessary)

Insert Paste in the current contents of the clipboard at the
position of the caret

Backspace Delete the character to the left if there is a caret; cut
selection if there is no caret (as ^X)

Key combination Action
73

Keyboard shortcuts
The table above describes the non-proprietary 102 key IBM PC layout keyboard.
Earlier editions of this guide described alternate uses for 3 of the keys when used
with the Archimedes layout keyboard, as follows:

Auxiliary keys

Some keyboards include additional keys compared with the 102 key IBM PC layout.
Typically there will be two “flag” keys adjacent to the Alt keys, and a “menu” key next
to the right hand Ctrl key. These keys are reserved to trigger user defined actions,
you must not trap them in your application.

Delete Delete the character to the right if there is a caret;
cut selection if there is no caret (as ^X)

Home Move to start of the document (as ^↑)

End Move to end of the document (as ^↓)

PageUp Scroll the window up (as clicking top of the scroll
bar)

PageDown Scroll the window down (as clicking bottom of the
scroll bar)

Backspace Delete the character to the left if there is a caret; cut
selection to the clipboard if there is no caret (as ^X)

Copy Delete the character to the right if there is a caret, or
copy selection to the clipboard if there is no caret
(as ^C)

Delete Delete the character to the left if there is a caret (as
Backspace); cut selection to the clipboard if there is
no caret (as ^X)
74

Handling keyboard input
Moving around a document

Besides moving around a document using the scroll bars, users must be able to
move around using some standard keypresses. Your application must support
those shown in the table below.

Applications ported from other systems

If you are porting an existing application from another operating system (or are
writing an emulation of one) you may feel there is a strong case for not changing
the keystrokes it uses, so that existing users of the package do not need to learn
new keystrokes. However, there will be more new users who are already familiar
with RISC OS than there will be existing users moving to RISC OS, so use the
shortcuts described above rather than the originals. If you wish to supply a
compatibility mode, offer it as an option from the menu or allow the user to
choose from the Choices dialogue box.

Special needs support
Remember that not all users have full mobility, vision and hearing and may need to
use input devices which are not supplied as standard. Any RISC OS compliant
application will benefit from supporting input from devices such as concept
keyboard, switches, trackerball and touchscreen technology.

Key Action

← → Move left/right by a character

↑ Move up a line. In a dialogue box, set the value in
the current field and move the caret to the end of
the previous field (cycling from first to last if
necessary)

↓ Move down a line. In a dialogue box, set the value in
the current field and move the caret to the end of
the next field (cycling from last to first if necessary)

⇑← ⇑→ Move left/right by a word

⇑↑ ⇑↓ Move up/down by a page (like clicking on the scroll
bar background)

^← ^→ Move to start/end of a line

^↑ or
Home

^↓ or
End

Move to start/end of the document
75

76

11 Handling selection
Introduction
Many applications allow the user to make selections of text or other objects and
then do something with the selection. This chapter explains how to handle this.

Selecting text
If your application supports text selection, use this method supporting the
following options:

● Clicking Select to set the caret position then dragging Select in any direction
to select a range of text.

● Clicking or dragging Adjust to adjust the extent of the selection, either
forwards or backwards.

● Clicking Adjust when no selection already exists to create a selection spanning
from the caret position to the click location.

Using the following conventions will make your application more powerful and
consistent:

● The caret cannot appear at the same time as a selection. The caret can be
thought of as a zero width selection: if a selection exists the caret cannot, but
if a selection is adjusted in extent down to zero size the caret should reappear.

● If the user types when there is a selection, the selected text is cut to the
clipboard, the caret placed where the selection was and the new keys
processed as normal.

● A double-click when setting/dragging a selection should select words.

At the simplest level, a word should consist of a sequence of alphanumeric
characters between spaces. It may also include any following
non-alphanumeric characters such as punctuation that come before the next
space, but not a newline character.

You may use a more complex model if you wish to provide ‘intelligent’ delete,
copy and move functions to preserve spaces between words, and to retain
correct punctuation.
77

Selecting objects
● When a selection has been made, pressing one of the cursor keys on the
keyboard deselects the text. For up and left the caret should be positioned at
the start of the recently deselected region, for down and right the caret should
be positioned at the end of the former selection.

Selecting objects
There are several established rules governing the selection of objects. Your
application should follow these rules:

Simple selection

● Clicking Select over an object deselects all other objects, and selects that one.
If there are several objects beneath the pointer, the ‘front’ object is selected (if
your application recognises this concept).

● If the user clicks Adjust instead of Select, the state of the object clicked on is
toggled between selected and deselected.

● If the user clicks with Select outside an existing selection it is deselected, for
example clicking in the margin of a word processing document.
78

Handling selection
Box selection

● Clicking Select outside an object and then dragging in any direction creates a
rectangular select box. One corner is given by the position in which Select was
clicked, the other by the pointer’s current position:

Any object that is partly or wholly within the select box is selected. It is also
useful to offer an option which allows only objects wholly within the box to be
selected. Draw does this if you hold down Shift while dragging. If the user
presses Adjust instead of Select, the state of the object clicked on is toggled
between selected and deselected.

Selecting from stacked objects

The method for selecting one object from a stack of objects varies between
applications. The following describes how Draw handles selection from a stack.
This method is appropriate if only graphic objects are involved, but if it is possible
for text and graphics to be stacked in your application, double-clicking to select an
object hidden behind text won’t work.

● When a user double-clicks Select over a stack of objects, the topmost object
that is already selected is deselected, and the next one down the stack is
selected in its place. This wraps around from the bottom of the stack to the
top, so if the lowest object is already selected, the top object becomes
selected instead.

Appearance

Once a selection is made it should be rendered in inverse video or with a bounding
box, typically in red, as appropriate for the class of object selected.

Select box
79

Selecting objects
When a caret or selection is placed in a different drag-and-drop window, the old
selection must be redrawn as a shaded selection, not left as is or removed entirely.
The caret must be removed entirely, or optionally redrawn as a shadow caret.

Cut and paste

The cut and paste method of copying and moving objects should be adopted for
new applications, augmented by drag and drop where appropriate. Do not support
other selection models in new applications.

The cut and paste method requires an application to keep a clipboard on which cut
or copied items are stored until the user pastes them back in, or closes down the
application.

Copying a selection

To copy a selection, the user has to copy the selection to the clipboard and then
paste it back into the same document or another document.

● To copy selected text or objects, the user must copy the selection to a
clipboard. It will overwrite anything currently stored on the clipboard. The
selection must also remain in its original place in the document.

The existing contents of the clipboard are lost when another selection is cut or
copied to it.

● The user needs to position the caret and use Paste to insert the copy into the
same document or a different document.

● Text should be pasted in immediately after the position of the caret. Objects of
other types should be pasted in so that the top left-hand corner of the object
is at the position of the pointer.

Moving a selection

To move a selection, the user has to cut the selection from one part of the file and
paste in to another part (or another file).

● To move a selection, the user removes it from its original position and stores it
temporarily on the clipboard. This operation is called Cut.

● The user needs to position the caret or pointer and use Paste to insert the cut
selection into the same document or a different document.

● Text should be pasted in immediately after the position of the caret. Objects of
other types should be pasted in so that the top left-hand corner of the object
is at the position of the pointer.

● Pasting from the clipboard into an existing selection replaces that selection
with the contents of the clipboard. The newly pasted text must then itself be
marked as selected.
80

Handling selection
A clipboard may be shared between applications, allowing a user to copy or cut
text or objects from a document using one application and paste it into a
document opened with another application.

If no selection is made, and therefore the caret is visible, neither the Cut nor Copy
operations affect the clipboard. If these operations are offered in a menu structure
they must both be shown faded under these circumstances too.

If the clipboard is empty any Paste option within your application’s menu structure
must be faded.

These guidelines only apply to moving a selection using the cut and paste method.
You can also move a selection within a document by dragging; see the section
entitled Dragging objects that are within a window on page 33.

The clipboard can also be manipulated using keyboard shortcuts provided the
window containing the selection has the input focus. These keys are described in
the section entitled Menu shortcuts on page 72.

Drag and drop

The drag-and-drop model is somewhat more intuitive than manipulating objects
via an imaginary off screen clipboard as the selected region is visible at all times. A
single mouse button initiates the Drag and completes the operation on release, or
the Drop.

The operation should be instantly familiar to users as it is very similar to the
drag-and-drop model used for copying files with the Filer and saving files from a
Save dialogue box.

The selected text or objects to be moved or copied can be within the same
document, or to a different document or application. The procedure is as follows:

● The user makes a selection as described in the section entitled Selecting objects.

● The user drags the selection using Select from its original position to its
destination. The destination may be in the same document or a different
document.

● The initial Select click that starts the Select drag does not deselect objects
within the selection.

● Dragging within a window moves the selection by default, or copies it if Shift is
held down. Dragging between windows copies the selection by default, but
moves it if Shift is held down.
81

Selecting objects
● During dragging, a ghost caret may appear in the destination window to allow
the user to position the dragged selection precisely. For text selections, the
ghost caret will typically resemble the normal caret. For non-text selections, it
may take another shape, such as the bounding box of the dragged selection
scaled to the destination window’s view scale.

● During dragging the pointer shape should be changed to the Drop shape
depicted in the section entitled Context-sensitive pointers on page 32. When more
than one type of object is included in the selection it may be appropriate to
use the ‘package’ icon from the Wimp pool to illustrate this rather than a
bounding box, with the sprite centred on the pointer’s active point.

● If the user holds the pointer near the edge of any window while dragging the
selection, the window should scroll to show the previously hidden area of the
document.

● If the user drags the pointer across the boundary of a window, copying
between windows becomes possible.

● When the user releases the mouse button, the selection is dropped into its
new position. When the drop occurs on a Filer window a new file is created
with a leafname created as described in the section entitled Save on page 58.

Details of the Wimp messages involved in the above behaviour are detailed in the
application note called Drag-And-Drop Functional Specification.
82

12 Colour and sound
Introduction
Colour and sound are valuable ways of adding meaning to the information used by
an application. Used well, colour or sound can add significantly to the value of an
application.

Colours and the palette
Users may choose to set their own palette for a number of reasons, ranging from
personal preference to impaired vision. Applications can’t therefore rely on the
default palette being used, but must read and use the current palette and handle
changes of palette on the fly. Rather than the old GCOL mechanism of setting
colours, use one of the following methods to avoid problems for the application
and the user:

● Use the standard desktop palette if you are just using colour to give a contrast
between different objects you are drawing.

● Use the validation string ‘C’ to select from 16M colours in Wimp plotted icons
as supported by the Nested Window Manager. The title bar may also be
recoloured with this validation string syntax, for example to highlight state
other than ‘focus’ or ‘no focus’.

● Use ‘true’ (RGB triplet) colours if you need to display a particular colour, then
use the ColourTrans module to give the closest possible approximation in the
current palette. This method doesn’t restrict the application to the limitations
of any particular hardware.

Even if your program doesn’t use many colours, you must check it works correctly
in all modes. Take particular care to check that operations like EOR (exclusive OR)
work correctly, because the results will differ depending on whether the mode in
use has 1, 2, 4, 8, 16 or 32 bits per pixel. Similarly, check two-colour modes
carefully; these use ECF patterns (stippling) for different shades of grey, and again
using EOR may give unexpected results.

The standard colour selector is described in the section entitled Standard selectors on
page 56.
83

Colours and the palette
Guidelines for using colour

Colour increases the amount of information your application can convey to the
user. It can make things stand out, attract attention, and highlight differences and
similarities between things. However, it can also cause confusion, obscuring
important elements of the screen display if it is used without thought. Remember,
too, that greyscale displays show only the luminance component without colour.

The following guidelines will help you use colour successfully:

Test your design in monochrome

Use form and text as the main means of communicating with a user; use colour to
add meaning, not to be of central importance. For example, you shouldn’t use
colour as the only difference between two icons. There are several good reasons for
this:

● Not all users have colour displays.

● Printing processes have limited colour gamut, or may be only black and white.

● A significant proportion of users can’t distinguish between some colours.

The best test is that your design should work on a monochrome or a greyscale
display as well as it does on a colour display. The only time you can reasonably
justify using colour alone to give meaning is where you are asking the user to select
or define a colour. Remember that although it is rare to encounter a simple
monochrome monitor in a desktop setting, high contrast display technologies
such as electronic ink used in handheld readers, only offer a limited range of greys.
Make sure your applications look good and work well in greyscale.

Use colour with restraint

A large number of gaudy colours on the screen looks a mess, distracts users, and
so devalues your application. Although the system can display up to 16 million
colours on the screen at the same time, research has shown that when colours are
being used to convey information, people can only work effectively with a
maximum of half a dozen different colours.

Limit the number of colours you use to take account of this, and make them
significantly different from each other – though they don’t have to be bright. Let
users change the colours if they wish; this is particularly helpful for users with
impaired colour vision.
84

Colour and sound
Make colours stand out

Any colours you use will stand out best over white or grey backgrounds, rather than
over other colours. Blues are easily overlooked by the eye, so you should not use
them to convey important information. You can turn this into a benefit, however, if
you use blue for gridlines or other guides.

You must always make pointers stand out from their background. You can do this
best by using contrasting colours for the background and pointer.

You must highlight text by reversing it out of its background, as you would on a
monochrome screen. The text must adopt the colour of the background, and vice
versa.

Avoid coloured text

A high contrast between text and its background is necessary to make text legible.
You should use black for text, and a colour with a high brightness for the
background – such as white, grey or yellow. Reversed-out text – white or grey text
on a dark background – has good legibility, but is not a good match for the style of
the RISC OS desktop.

Where to use colour, and where not to

Resist the temptation to over-use colour to make your application ‘pretty’. You
should only use colour within your application’s work area(s), to show its data.

Other parts of your application’s displays (such as window borders, menus and
dialogue boxes) must use the standard colours defined elsewhere in this Guide, to
be consistent with other applications. The main exceptions to this are

● where you need to present colours for the user to select one

● where you need to display a file icon

● in the application’s icon bar icon.

You may, if you wish, use non-standard colours in the Info dialogue box displayed
by your application.

Sound
Like colour, sound provides an additional channel of communication between the
computer and the user. Like colour, too, it can add to the meaning of an
application, but, if handled badly, can equally well detract from its value.

Sound can be used in two main ways:
85

Sound
● As a warning, to alert the user that something has happened (that mail has
been received, for example) or that action needs to be taken – an error
message acknowledged, or a choice made in a dialogue box.

● As data within an application that processes sound.

Much of what is said below applies to the first case, but not to the second.

Guidelines for using sound

Sound should be used in much the same way as colour – with restraint and to add
meaning.

The design should work with sound turned off

Use sound to add meaning to an event, not as the only way of marking an event.
There are good reasons for this:

● some users may be away from their machines, or distracted by a phone ringing
when the event occurs

● a significant proportion of users have impaired hearing.

If you use sound as a warning, back it up with a visual indication.

Use sound with restraint

A jolly jingle in an application or game might be delightful to the ear the first time
it is heard, but can soon become very irritating. Don’t overdo the sound, and allow
users to turn it off if they wish.

Melodious but not too subtle

You should avoid harsh and raucous sounds – they can be annoying and even
frightening to users, and will set a tone for your application which you might not
have intended. You may like to give users the option of replacing sounds with
alternative modules.

At the same time, if you are giving meaning to your sounds, you should use
different voices rather than different notes in order to distinguish between sounds.

● Very few users have perfect pitch and so can remember precisely how a
particular note sounds.

● Many users cannot distinguish between similar notes, unless they hear them
back to back, but most users will be able to distinguish (say) a ‘crash’ from a
‘beep’.
86

Colour and sound
Controlling volume

You should give users the option of turning off sound altogether. You must instruct
your users to use the Configure application to set overall volume levels (and, of
course, your application must respond to those settings), rather than providing
your own mechanism. Don’t include any instructions in your application that turn
off sound globally (such as *Speaker Off); always allow users control over the
sound in their system, and make settings only for your own application.
87

Sound
88

13 Configurations and user choices
Introduction
It is important that your applications support all possible combinations of
hardware and software that a user may wish to use, and that they respect as far as
possible the user’s choice about configuring their machine. This is becoming
increasingly difficult as more types of peripheral become available, but it is
essential if your applications are to be accessible to as large a market as possible.
Your applications must support:

● the hardware a user has bought and must use

● the software preferences a user has chosen to use (such as screen mode).

If it is appropriate, your application should allow users to set up and save choices
about how your application behaves and appears.

Hardware configuration
You will need to bear in mind that a user may have any combination of RISC OS
computer, monitor and printer and may have as little as 4MB of RAM.

Monitors

Don’t make assumptions about the type of monitor that is in use and therefore
about screen size and the screen modes that may be available. RISC OS supports a
wide range of display types, from a handheld monochrome LCD to widescreen TV,
with varying numbers of colours supported depending on the graphics hardware.

Users will have chosen a screen mode that is suitable for the type of monitor they
need or can afford, and will have decided on the resolution they want. Don’t try to
override that choice by changing the screen mode; make sure your applications can
start up in any mode.

Make the application read the current screen mode when it is loaded (and any
associated information such as resolution and aspect ratio). If it is impossible to
support some screen modes, the application should present an error message if it
can’t operate in the current mode rather than displaying a corrupted or illegible
image.
89

Hardware configuration
Make sure your application supports VGA resolution at 640 x 480 square pixels as
this is likely to be supported by all monitors commonly available. This corresponds
to old style numbered modes 25 to 28 inclusive for 2, 4, 16, and 256 colours
respectively,

Screen modes

Remember that users may change screen mode while your application is running,
so it must be able to handle changes of screen mode on the fly. It also means you
can easily move your application to new and better screens and modes when they
become available. The Window Manager sends a message to all applications when
the mode changes to allow you to re-read any parameters required and rescale any
outline fonts for which you have a font handle.

Screen size

Because users may have different size screens, you can’t rely on screen size, so
always work in OS graphic units thinking of them as a constant unit of
measurement, rather than a fraction of the width of the screen. The standard
assumption is that there are 180 OS units to the inch, even though this may in fact
vary between physical screens. If your application is to be device-independent, it
must be the same size in OS units in any mode, rather than the same fraction of the
screen.

Printers

If your application produces output for printing, it must produce output in a
standard format that can be handled by the RISC OS printer drivers. Do not assume
that users have a particular type of printer, and don’t make assumptions that will
prevent users adding new types of printer as they become available.

Storage medium

If you write your applications to be independent of the filing system in use, they
should run on any underlying medium without difficulty. This may include running
from a shared directory on a fileserver over a network, from an image filing system
such as a compressed archive, or even embedded in the system ROM.

There are a few general points to bear in mind to make your applications easy to
use regardless of the medium on which it is supplied:

● Avoid using a large number of small resource files as this makes applications
slow to start up over a network or from CD-ROM.

● Never write to files inside the application itself as several users may be using
the application at once in a networked environment. Allow theses files to be
held separate from the application itself so that they can be stored locally.
90

Configurations and user choices
● Remember that your application may read data from a write-protected
location or medium. Do not associate ability to write with a particular filing
system as the user may have enabled write protection on that disc, for example
by enabling FSLock.

● Be aware that some disc formats have file name limitations, for example an
ISO 9660 format CD-ROM can only use upper case letters, numbers, and
underscore.

● Use the hourglass for single-tasking operations that are complex or involve a
lot of file manipulation. Since initial display of the hourglass is automatically
suppressed with a timer it may not be shown on computers with a fast CPU,
but gives an important indication of activity for slower situations, for example
spinning up a parked disc.

User choices
If it is possible for a user to set choices that will be used each time your application
is run, you should offer this as an item called Choices... in the icon bar menu. This
should display a dialogue box allowing the user to implement and save choices.

Any choices which are not currently available should be faded. The four action
buttons are:

● Default resets the default values set within the application.

● Save saves the choices to be reused in subsequent sessions and additionally
implements the new choices immediately.

● Cancel resets the choices in use before the dialogue box was displayed.

● Set implements the choices for the current session only, without saving them.

In some applications, a single dialogue box for setting all choices may not be
appropriate. If there are several mechanisms for setting different groups of choices,
your application may instead have a menu item Save choices in the icon bar menu
91

User choices
that saves all the choices set within the application. If the user doesn’t use Save
choices, any choices set are used for the current session only. The RISC OS
Printers application uses this method for setting and saving choices.

It is recommended to store choices in human readable text form, to make
diagnosing problems simpler.

Saving choices

Given the variety set out in the section entitled Storage medium on page 90 it is clear
that you must not save user choices within the application itself as these would
conflict with other users in a multi user environment, or fail if the media is
write-protected.

The computer’s Universal Boot application, which runs at startup, will have defined
a system variable Choices$Write which points to a central directory in which user
choices can be saved.

The name of your application, which has been registered, becomes a unique name
within the choices directory. Where only a few settings are required this name can
be used to formulate the name of a file <Choices$Write>.MyApp in which the
choices are saved.

For more complex situations it can be used as the name of a directory instead,
though the directory will not initially exist and will need creating. Any number of
separate choices files private to your application can then be stored inside.

Never attempt to change the value of the Choices$Write system variable, but you may
wish to refuse to proceed if the variable is found to be unset when your application
is first run.

Loading choices

The computer’s Universal Boot application, which runs at startup, will have defined
a system variable Choices$Path which is made up of a set of one or more directories
in which user choices can be retrieved.

The same uniqueness applies as for saving choices, so you may formulate the
complete path Choices:MyApp for a single file, or Choices:MyApp.FileName to
select from a directory if you save several private choices files.

Bear in mind that the path may be made up from several comma separated
locations, for example the network administrator may have set up some company
wide settings that everybody must use for one application title but not others. This
would be achieved by the ordering of the elements in the path, with the company
92

Configurations and user choices
wide settings first, then user settings second. It is for this reason that Choices$Write
must never be read from, and Choices$Path must never be written to - they may not
be the same location.

Never attempt to change the value of the Choices$Path system variable, but you may
wish to refuse to proceed if the variable is found to be unset when your application
is first run.

Default choices

When the user first runs your application, there will of course be no settings
present within the choices path to load. This might also occur later if the Universal
Boot application is reset to the factory defaults.

You must offer default choices in this situation, rather than failing to start.

When Choices:MyApp does not exist there are two techniques to deal with this
situation

● Generate a set of defaults using code within your application.

● Create an intermediate path variable, and add an entry to the end of it which
points to a default set of configuration files. In that way, Choices: will be checked
first as detailed above, before falling back to the default configuration file
location last.

Software configuration
Users will have made choices using Configure about the way they want their
computer to behave. This may include default screen modes, sound volume and
voice, mouse speed, instant effect window drags and so on. They may have based
their choices on their own priorities regarding processing speed and use of the
computer’s resources, on whimsical preference or on some more pressing
consideration such as impaired vision or restricted hand movement. You should
not make changes to the configuration, but should instead issue a dialogue box
asking the user to make changes if the current settings are not suitable for your
application.

Other applications

Remember that users will want to use the multi-tasking facility of their computer
and may run your application alongside others. Make sure that your application
works with as many others as possible, and particularly with very popular
applications, and check that there are no conflicts in resource names and so on.
93

Software configuration
Always register the names of your applications, apply for filetypes and any other
resources you need. These precautions avoid conflicts with names used in
applications produced by other developers such as overwriting eachother’s
application sprite in the Filer.

The registered name of your application includes:

● All environment strings prefixed with the registered application name (e.g.
MyApp$String).

● The sprite names !MyApp, ic_MyApp and sm!MyApp.

● The choices directory object Choices:MyApp.

Please visit https://www.riscosopen.org/content/allocate for further details of how
to register an allocation.
94

14 International support
Introduction
It is very important to support users whose first language is not English. RISC OS
computers are sold in many non-English-speaking countries and RISC OS
documentation is provided in some other languages; more languages are likely to
be added in the future. Every step you make towards helping users understand
programs in their native language helps your sales in the international market.

RISC OS already provides multiple alphabets/keyboards to support international
use. It is also possible to translate ROM messages to another language by
providing a Territory application; for example for German or French variants. Other
international support facilities are planned for the future.

The following guidelines will help you to accommodate non-English use of your
applications.

Language
Remember that English is not the first language of all users.

● Consider translating any mnemonic shortcuts (such as ^D for ‘down’) which
require the user to know the word for the required action, using the first letter
of the translated word.

● Avoid using culture-specific icons, or icons that are ‘puns’ on a name. In
English it may be the case that the same verb is used with two different
meanings, for example an icon depicting a running man because to run a
computer program uses the same verb for both meanings, but are unrelated
verbs in other languages.

● Use pictorial icons rather than text/picture combinations.

Character sets
International users may have their computers set to a different territory setting and
may want to use accented and other characters that are not part of the standard
British character set. The following guidelines will help you to write applications
that support non-British character sets.
95

Information formats
● Don’t trap or use the Alt key in your applications.

Different forms of international keyboards have standardised the use of Alt for
entering accented characters; allow RISC OS to interpret its use. If you don’t,
users may be unable to type some of the accented characters they need.

● Don’t forbid the use of top-bit-set characters in your program.

Again, this may prevent users using accented characters.

● Don’t assume that Latin1 is the current character set. The Unicode Font
Manager may be in use in the desktop, giving access to potentially millions of
code points in a font.

● Don’t assume the user has a standard British/American keyboard layout.

● Use the operating system facilities for alphabetic sorting, lower/upper case
testing and conversion as they handle accented as well as unaccented
characters.

Information formats
Some information, such as dates and decimal numbers, is represented differently
in countries other than Britain.

● Use system facilities for date and time string conversions. This allows the user
to choose the format required (month-day-year, for example). If you use your
own mechanism for setting information like this, non-British users may not be
able to set the format they are familiar with.

● The format of the version number and date presented in the information about
your application from the icon bar menu should not be fixed in the code, as
international users may not understand British number or date formats.

● Include an option to recognise comma (,) as a decimal point in values used for
calculations and in determining the positioning of text with a decimal tab.

The part on Internationalisation in the RISC OS Programmer’s Reference Manual deals
with internationalisation issues through use of the Territory Manager.
96

International support
For display of very large numbers use the internationally accepted SI prefixes for
standard powers of ten and two.

The long hand form, kilometres rather than km, should be employed where space
permits as this will be easier to understand.

Unicode support
International users may need to make use of Unicode fonts because their written
language requires characters not in the Latin1 character set.

Font Manager (version 3.41 or later) supports Unicode fonts with potentially
millions of code points in them. You can find the version of the Font Manager by
calling the Font_CacheAddr SWI as documented in the RISC OS Programmer’s Reference
Manual.

UTF-8 alphabet

In the RISC OS desktop there is only one system wide alphabet supported at any
one time. In support of Unicode, additional territories will be added in future with
the alphabet set to UTF-8. To support this in your application you must:

● Abstract all textual messages into a standard Messages file.

● Use a Templates file or Res file for all your window dialogue designs.

This is good practice anyway, since it permits your application to be translated by
people who are not skilled in programming. The Toolbox will automatically load
the appropriate Messages or Res file based on the configured territory as detailed
in the section entitled Task initialisation and run-time information in the User Interface
Toolbox Manual.

When you come to translate your messages, templates and resource files into
UTF-8 the following notes may be useful:

● As with most previous RISC OS alphabets, UTF-8 is a superset of ASCII so and
bytes in the range 0-127 map one-to-one and no transform is required.

Prefix Power of ten Power of two

k (kilo) 103 210

M (mega) 106 220

G (giga) 109 230

T (tera) 1012 240

P (peta) 1015 250

E (exa) 1018 260
97

Unicode support
● Acorn Latin-1 is a superset of ISO Latin-1 (ISO 8859-1); bytes in the range
160-255 have identical meaning. Unicode assigned code points in this range to
match ISO Latin-1, so if you are entering text by code point (for example using
Chars or Alt-plus-numeric-keypad) then the behaviour in Acorn Latin-1 and
UTF-8 alphabets are identical. However, each of the code points in this range
are represented in memory by a two byte UTF-8 byte sequence.

● More care must be given to translating Acorn Latin-1 characters in the range
128-159. Because each of the defined characters in this range already have
(different) defined code points in Unicode, the Font Manager expects you to
use the standard code points for them instead.

Desktop font

If the text is intended to be rendered in the desktop font - because it's part of an
icon (including window titles and menus) or passed to SWI Wimp_TextOp, rather
than passed to the Font Manager directly - then additional rules apply.

The Wimp effectively extended the underlying alphabet by reinterpreting five or six
otherwise unused characters and substituting a character from the WIMPSymbol
font.

These characters already have code points assigned to them when the alphabet is
UTF-8, so with similar rationale to the Font Manager's treatment of characters
128-159, the Wimp expects you to use the standard code points instead - although
it will still automatically switch font handle for you mid-string if the desktop font
doesn't define glyphs for those characters.

For reference, the characters affected are as follows:.

Note that the Wimp doesn’t use a Euro symbol itself, but as it clashes with a
previous use by the Wimp for character &80 it is listed for reference purposes.

Latin1 Code Unicode code point UTF-8 sequence

✔ (&80) U+2714 (Heavy check mark) &E2 &9C &94

€ (&80) U+20AC (Euro sign) &E2 &82 &AC

✘ (&84) U+2718 (Heavy ballot X) &E2 &9C &98

(&88) U+21D0 (Leftwards double arrow) &E2 &87 &90

(&89) U+21D2 (Rightwards double arrow) &E2 &87 &92

(&8A) U+21D3 (Downwards double arrow) &E2 &87 &93

(&8B) U+21D1 (Upwards double arrow) &E2 &87 &91
98

International support
Text input

There are some additional requirements if your application accepts text input
itself, such as a text editor, when the system wide alphabet is UTF-8. You must:

● Treat key codes delivered by the Wimp as UTF-8 byte sequences, not equating
them to Latin1 characters.

● Navigate the caret forwards and backwards through the text taking its
encoding into account, as one character on screen may be represented by
several bytes in UTF-8 encoding in memory.

● Handle backspace and delete by removing the appropriate number of bytes
from the encoding in memory such that one character is removed from the
screen, as the user expects.

Applications that use the Wimp exclusively to collect any text input using a
Writable field, or menu containing one, can ignore this section as the Wimp will
handle moving the caret and insertion and deletion automatically.
99

Unicode support
100

15 Implementing the design
Introduction
Once you have designed a new application, you will begin to write code for it. This
Guide does not offer any advice on structuring or writing your program; you will
find all the detailed advice you need about writing the program in the Programmer’s
Reference Manual.

This chapter and the next give advice on

● precisely how to position and create the elements of the user interface
described in earlier chapters of the Guide

● building the application directory for your application.

It is assumed that this chapter and the next will be used by programmers and so
more technical language has been used in some places than in the other chapters
of the Guide. Technical terms are included in the glossary.

Choice of programming language
We strongly urge you to program using C. We believe that you’ll find large
applications easier to maintain if they’re written in C rather than (say) BASIC or
Assembler.

You may feel that applications developed using C will be larger and slower than
those developed using the ARM assembler. However, there need not be a
significant difference if you’re careful to write efficient code. You can incorporate
chunks of assembly language in C programs for parts where speed is critical. Even
so, BASIC or assembly language may be more suitable for a few tasks, particularly
if speed or code size is very important. It is up to you to balance the benefits of
speed and code size on the one hand against development time, ease of
maintenance and ease of porting your code between environments.

If you wish to write BASIC programs on your RISC OS computer you need the BBC
BASIC Reference Manual.

If you wish to write your applications using the desktop assembler, you will find the
Acorn Assembler Manual provided with the Desktop Development Environment
useful.
101

Using legal operations
Use of the Toolbox from C

It is recommended, but not required, that applications use the Toolbox as detailed
in the User Interface Toolbox Manual provided with the Desktop Development
Environment. Using the Toolbox means that many of the interactions with
standard gadget icons are handled automatically by the Toolbox and require no
code to be written in your application at all. This greatly simplifies application
development and ensures all applications using the Toolbox follow the style set
out in this guide.

The Toolbox communicates with your application via events, for example when a
selection is made from a pop up menu, allowing the programmer to think more in
terms of the problem to be solved rather than the detailed mechanics of how to
achieve a solution.

There is more information on dealing with events in the chapter describing eventlib
in the Acorn C/C++ Manual and if it is necessary to bypass the Toolbox to call the
Wimp directly the wimplib is also described.

Calling the Wimp directly from C

The Desktop Development Environment also supports using template files and
calling the Wimp SWIs directly, though this method does not take advantage of the
type checking facilities of the C programming language. Consider using a library of
C functions to help as this will be less error prone than trying to call the SWIs
manually, and will often come supplied with C structure definitions that map
directly to the data structures that the Wimp expects to receive.

Using legal operations
To make sure your applications will work well on computers released in the future,
only use legal methods in your programs:

● do not bypass operating system interfaces or access hardware devices directly

● do not read and write page zero locations (the hardware vectors, etc) or kernel
workspace

● do not use illegal interface operations.

RISC OS is improved and expanded on a continuous basis, and such tricks may
well not work on future machine and operating system upgrades.
102

Implementing the design
Responsiveness
The system software has been written very carefully so that all of this performance
is delivered to be used by applications, rather than being swallowed up within the
operating system. Fast, smooth scrolling and redrawing are worth striving for as
they make it easier for a user to make effective and productive use of your
application.

Redrawing speed

All applications must concentrate on making redraw fast. One technique you can
use for a window that is difficult to redraw quickly is to store its image as a sprite –
of course you can only do this if it won’t change. Another important technique for
speeding up redraw is the use of source-level clipping. During redraw and update,
the Wimp will always inform your application of the current clipping rectangle.
Don’t waste processor time redrawing bits of your window if you don’t need to. (For
an example of how to use this technique, see the Patience application from the
Applications Suite.)

If you make extensive use of the standard gadget icons within dialogue boxes, this
means that RISC OS does most of their redrawing for you. You should only need to
process redraw events for dialogue boxes when they contain complex user
graphics.

When implementing operations such as dragging or scrolling be sure to use a timer
to set the rate at which the operation is performed rather than relying on the CPU
speed, otherwise when the CPU speed is increased on a new computer the
operation will be difficult to control with a mouse.

Units of measurement
Sizes and positions are given in this chapter in OS units where possible; you
should work in OS units rather than pixels whenever you can so that you don’t
restrict your applications to particular monitor types and screen modes.

Sprites
Design sprites to use as little valuable system resources as possible. Sprites for
icons should be defined in a numbered mode where possible with the least
number of colours required by the design. Recall that numbered modes must be
used for a sprite to be accepted by versions of RISC OS prior to 3.5. Rectangular
sprites do not need a transparency mask; those with irregular outlines do.
103

Sprites
Check the appearance of your sprites in one, two, four, eight, 16 and 24 bit screen
modes; the Wimp will translate the colours used to the nearest one available.

Don’t forget to include sprites for other resolutions as described in the section
entitled The !Sprites file on page 116.

Size of sprites

Sprites that can appear in a directory display will need large and small versions in
each resolution. If you don’t define a small sprite, RISC OS will display the large
sprite at half size, but this is unlikely to look as good as a specially designed small
sprite.

Large icons

A large icon must be 68 OS units high. Try to use a square sprite for file icons with
a border to match the other file icons present in that theme, and an irregular
outline for application icons so it is easier to distinguish when alongside other
files. The square (or bounding box for an irregular outline) will obviously be 68 OS
units wide. If you have to make your large sprite wider, you can make it:

● up to 160 OS units wide if it will be used in directory displays – although 100
OS units is a more practical limitation if you want the small icon to have the
same proportions

● as wide as necessary if it will only be used on the icon bar.

Small icons

A small icon must be half the size of a large icon – that is, 34 OS units high. Again,
it should preferably be square if it is a file icon (i.e. 34 OS units wide), or have a
square bounding box if it has an irregular outline. As 34 is not divisible by 4, for
reference the rectangular pixel dimensions are 17 pixels wide by 9 pixels high
(rounding up halves). If you have to, you can make a small icon up to 50 OS units
wide but avoid using non-standard sizes as it makes the directory display untidy.

There is information on how icons are ‘made known’ to RISC OS in the section
entitled Application resource files on page 115.

Positioning icons on the icon bar

When you place an icon on the icon bar, put icons relating to physical devices and
resources such as filing systems on the left, and others on the right. RISC OS uses
the icon’s width to position it horizontally, but it is your responsibility to position
the icon vertically.
104

Implementing the design
There are two main types of icon which you can put onto the icon bar: those
consisting simply of a sprite, and those consisting of a sprite with text written
underneath. The diagram below shows you how to position icons vertically on the
icon bar:

In the diagram, y coordinates are given in terms of the icon bar work area origin;
lower coordinates are inclusive, and upper co-ordinates are exclusive.

Your application must position icons with text underneath them 16 OS units below
the icon bar’s work area origin, and those without text level with it.

Sprites for iconised windows

The sprites used for iconised windows should be the same size as large icons. You
can look at the iconised window icons in the ROM if you want to see an example.

Windows
The first window your application opens must be horizontally and vertically
centred on the screen, whatever the current screen mode. It should occupy no
more than a quarter of the screen, to emphasise that your application does not
replace the existing desktop world, but is merely added to it. Open any subsequent
new windows at an offset of 48 OS units moving down the screen, unless there is a
good reason not to do so. The initial size and position of windows may be
user-configurable and saved as a preference.

Colours

Standard colours you must use for the application window are:

+68

0

+108
+88

+20
+16

–16

–24
� ��

� ��

Sprite
 only

Sprite

Text

(max)
105

Menus
● black (Wimp colour 7) on a grey background (Wimp colour 2) for the title when
it is not highlighted (that is, when the application doesn’t have the input
focus)

● black (7) on a cream (12) background for the title when it is highlighted (when
the application does have the input focus)

● dark grey (3) for the outer colour of the scroll bar

● light grey (1) for the inner colour of the scroll bar.

Menus
Each menu item must be 44 OS units high. Try to keep the width of submenus as
small as possible; this reduces the amount of mouse movement users need to
reach an item, so making it faster and easier for them to use the menu.

You must open a menu 64 OS units to the left of the pointer’s position when Menu
was pressed. This reduces further the amount of mouse movement users need to
make.

The bottom of the menu title must normally align with the pointer:

Icon bar menus

For icon bar menus, the base of the menu must be 96 OS units from the bottom of
the screen. This stops the menu obscuring the icon bar sprites.
106

Implementing the design
Pop-up menus

When a pop-up menu appears, it must appear immediately to the right of the
button the user clicked on to display it.

Menu colours

The standard colours you must use for a menu are:

● black (Wimp colour 7) on a grey background (Wimp colour 2) for the title

● black (7) on a white (0) background for unshaded menu items

● light grey (2) on a white (0) background for shaded menu items.

Interactive help

Provide help to users for every item in the menu when asked via messages from the
Help application. The Help application provides tokens that call out the preferred
Terms for desktop items on page 10 which should be used where possible to make the
phrasing consistent and easy to understand, these tokens are listed in the table on
page 113.

UTF-8 shortcuts

When the system alphabet is UTF-8, care is needed to correctly translate the
keyboard shortcut character for shift (upwards double arrow) from their original
Latin1 to equivalent Unicode code points. Details of the code point can be found
in the table given in the section entitled Unicode support on page 97.

Dialogue boxes
Use a template editor such as WinEdit to prepare dialogue boxes when your
program calls Wimp SWIs directly, or a resource file editor such as ResEd when
using the Toolbox.

It is important to prepare dialogue boxes to be resolution independent. Check that
they work in both high resolution modes (such as mode 28) and a TV-resolution
screen mode (such as mode 12) afterwards.
107

Dialogue boxes
Size of dialogue boxes

The size of a dialogue box will depend on what it has to include; there is some
advice on considering size when designing a dialogue box in the section entitled
Size of dialogue boxes on page 63. However, it should not be larger than 800 by 600 OS
units. The proportions of an A4 page (1:1.414) can be used to give a shape that is
pleasing to the eye. When working out how large to make your dialogue box, you
will need to bear in mind the sizes of the standard components set out in the table
below.

Leave 8 OS units clear space between components.

Creating elements of dialogue boxes

To create the controls and fields you may need to include in a dialogue box, use the
following instructions.

Default action button

This is a text icon of click button type, with black foreground (Wimp colour 7) and
grey background (Wimp colour 1). It is vertically and horizontally centred and has a
verify string ‘R6,3’.

A default action button is 68 OS units tall; its width is large enough to hold the
text, plus 6 OS units clear each side within the button, plus a further 12 OS units
each side for the remainder of the icon.

Where possible, use a single word for the text label, preferably an imperative verb
such as Print or Save. You can use OK if there is no sensible alternative; don’t use
Yes or Go.

Component Vertical size Horizontal size

Action button 52 OS units text +10 OS
units each side

Default action
button

68 OS units text +18 OS
units each side

Radio button 44 OS units as needed

Option button 44 OS units as needed

Writable field 52 OS units as needed

Display field 52 OS units as needed

Slider 40 OS units as needed

Adjuster arrow 32 OS units 32 OS units

Text label 40 OS units max
per line

as needed

3D window border 2 OS units 2 OS units
108

Implementing the design
There must be only one default action button on each dialogue box.

Action button

This is a text icon of click button type, with black foreground (7) and grey
background (1). It is vertically and horizontally centred and has a verify string
‘R5,3’.

An action button is 52 OS units tall, with 12 OS units below the baseline of the text
and 40 above. Its width is large enough to hold the text, plus 6 OS units clear each
side within the button, plus a further 4 OS units each side for the remainder of the
icon. All action buttons in a set in a dialogue box should be the same width.

Where possible, use a single word for the text label, preferably an imperative verb
such as Cancel. If the action button leads to a further dialogue box, the label must
end with an ellipsis (…).

Display field

This is a text icon, with black foreground (7) and grey background (1). It has a
validation string ‘R2’.

A display field is 52 OS units tall, with 12 OS units below the baseline of the text
and 40 above. Its width is large enough to hold the longest likely text, plus 6 OS
units each side.

A display field can’t be directly edited by the user, but the value it shows may
change as a result of making other settings.

Writable field

This is a text icon of writable button type, with black foreground (7) and white
background (0). It has a validation string ‘Ktar;Pptr_write’.

A writable field is 52 OS units tall, with 12 OS units below the baseline of the text
and 40 above. Its width is large enough to hold the likely text, plus 6 OS units clear
each side within the field.

Pressing Return after giving input to a writable field should activate the default
action button, not move the caret to the next field. The section entitled Writable
fields on page 53 describes the keystrokes that can be used in a dialogue box.

Option button

This icon has text and a sprite; it is button type Radio. It has a black foreground (7);
the background is not filled; the border is turned off. It has a validation string
‘Soptoff,opton’.
109

Dialogue boxes
You will need to create the icon and fill in the text. The option button must be
vertically centred, but not horizontally centred.

Radio button

This icon has text and a sprite; it is button type Action. It has a black foreground
(7); the background is not filled; the border is turned off. It has a validation string
‘Sradiooff,radioon’.

You will need to create the icon and fill in the text. The radio button must be
vertically centred, but not horizontally centred.

Set the ESG (Exclusive Selection Group) value to a non-zero figure to match the
other icons in the same group.

Adjuster arrows

These are always presented in pairs. Each icon consists of text and a sprite and has
button type auto-repeat. The background is not filled, the border is not set, and the
text string is empty. The down arrow has a validation string ‘R5;Sdown,pdown’; the
up arrow has a validation string ‘R5;Sup,pup’.

Each sprite is 32 OS units square; each icon is just large enough to hold the sprite.

The two arrows are usually positioned side by side. When they are, there is no
space between them, and the down arrow is always to the left of the up arrow. The
adjuster arrows should be to the right of the item they control, with 8 OS units
space between it and the down arrow.

If the adjuster arrows increment a value in a display or writable field, they must be
aligned horizontally with the field, with their lower edge 4 OS units below the
baseline of the text in the field. If the field has an associated text label showing the
units or a % symbol, the adjuster arrows should be right next to the field, with the
label 8 OS units to the right of the arrows.

If the adjuster arrows are separated by a line or graphic (as they may be if you are
using them to adjust the dimensions of a square, for example), leave 8 OS units
between the line and each arrow.

You may occasionally want to use a left/right pair of adjust arrows; they are created
in much the same way as up/down arrows.

Slider

A slider comprises three icons: the well, the background and the value. These must
be numbered in the order given so that they stack correctly. The instructions below
are for a simple horizontal slider.
110

Implementing the design
The well is an icon with no text. It has a validation string ‘R2’. The background is
unfilled. It is 40 OS units tall and as long as the slider.

The background is an icon with no text. It has a white background (0); the border is
not set. It is 16 OS units tall and 24 OS units shorter than the well. It is centred
inside the well.

The value is an icon with no text. It has a grey background (5); the border is not set.
It is 16 OS units tall; its width is sufficient to display the value of the slider. It is
vertically aligned with the background, and the left end is coincident with the left
end of the background.

For a vertical slider, the well is 40 OS units wide, the background and value are 16
OS units wide and the background is 24 OS units shorter than the well and centred
within it.

You may design more complex sliders if appropriate.

Pop-up menu icon

This is an icon made up from text and sprite, with button type click and with a
validation string ‘R5;Sgright,pgright’. The border is not set and the background not
filled.

The icon is 44 OS units square, the size of the sprite.

The pop-up menu icon is centred vertically and set to the right of the value it
relates to.

If an item has both adjuster arrows and a pop-up menu, the pop-up menu icon is
set to the right of the adjuster arrows. However, this combination can look
cluttered and is best avoided if possible.

Text label

This is a text icon, with black foreground (7) and the background unfilled. It is
vertically centred; if it abuts an item on the right, it is right-justified.

A text label is 36 OS units tall, with 8 OS units below the baseline of the text and 28
above; leave 4 OS units between lines of text. If the line contains any other items,
such as a writable field, the height of the line will be dictated by the tallest element
in it. The width of a text label is sufficient to hold the text.

Don’t terminate a label with a colon (:). The text associated with a radio or option
button is created as part of that button and not as a separate text label.

Group box

This comprises two icons: the box itself, and a label. The box must have a lower
icon number than the label and any items inside the box.
111

Dialogue boxes
The box is a large icon surrounding all the contents of the box. It has an indirection
string ‘R4’. It has no text; the background is not filled.

The label is the same as a text label described above. Create the label from an
indirected text and sprite icon to cause the Wimp to use a rubout box only as large
as the text label needs. It is positioned to overlay the top face of the box at the left,
leaving 32 OS units of the top face visible at the left. It has a black foreground (7)
and grey background (1).

Leave 16 OS units horizontally and vertically, for clearance inside and outside the
box. For very large boxes, increase the clearance slightly.

Scrolling pane

Use a real pane window for a scrolling pane. Don’t include a Title bar, but label it
with an ordinary text label. Don’t put a group box around the pane.

Set the size appropriately, but remember that a very short scroll bar makes the
pane look cluttered. Allow some variation in the size of the scroll bar.

Dialogue box colours

Use these standard colours for a dialogue box:

● Black (Wimp colour 7) on a grey background (Wimp colour 2) for the title.

● Black (7) on a grey (1) background for the body.

● The title bar changes to cream (12) when the window has the input focus.

Dialogue boxes match the colouring of menus, to show that they are part of the
menu tree. If the dialogue box is large and has writable fields then use colour 1
rather than 0 as the window background. Large expanses of white background can
make writable fields harder to see.

Positions of dialogue boxes

Open a dialogue box called from a menu so that it is centred on the mouse pointer
(subject to screen boundary constraints).

All error boxes must be centrally positioned on the screen.

Interactive help

Provide help to users for every icon in the dialogue box when asked via Wimp
messages from the Help application.
112

Implementing the design
The Help application provides tokens that call out the preferred Terms for desktop
items on page 10 which should be used where possible to make the phrasing
consistent and easy to understand.

Where possible the help for elements of a dialogue box should use these tokens in
the form given here replacing the question marks with a description applicable to
your dialogue.

Token Text inserted by the Help application

\S Click SELECT to

\R Move the pointer right to

\A Click ADJUST to

\T This is the

\G This option is greyed out because

\W This window is

\D Drag SELECT to

\d Drag ADJUST to

\w window

\s SELECT

\a ADJUST

|M ↵

Element Standard phrase

Work area This window allows you to ???.

Labels (pre) This is the ???.

Labels (post) The ??? is measured in ???.

Writable field You can enter the ??? here.

Display field For fixed fields see Labels (pre), for user adjustable
fields see Adjuster arrows.

Action button Click SELECT to ???.↵
Click ADJUST to ???.

Option button This indicates if ???.↵
Click SELECT to select or deselect this option.

Radio buttons This indicates if ???.↵
Click SELECT to select this alternative.

Adjuster arrows You can adjust the ??? using the arrows.

Sliders You can adjust the ??? using the slider.

Scrollable lists This list allows you to ???.

Pop-up menus You can choose a ??? from the menu.
113

Dialogue boxes
When describing jargon avoid using the term in the interactive help description, for
example an option button labelled “Act as an IP router” might say “Click SELECT to
make your computer forward packets between networks” which explains its
function without using the jargon “IP router”.
114

16 Application directories
Introduction
You must place your RISC OS applications in a directory whose name begins with
‘!’, such as !Draw. When you refer to the application in documentation or help text,
however, you should leave the ‘!’ off the name. The Filer module provides various
mechanisms to help such applications. For example, the Filer will run its boot file,
load its sprites and make its help information available.

There is also provision for handling shared resources – ones that may be of use to
other applications. This is explained in the section entitled Shared resources on
page 120.

Application resource files
You can hold any form of resource within an application directory. There are several
standard ones; for those your application uses, it must use the filename(s) given
below. An application may not need all of these resources.

File name Purpose

!Boot *Run by the Filer when it first displays the
application directory

!Sprites[A][nn] Passed to *IconSprites by the !Boot file, or the Filer,
the files contain the application’s sprites for different
screen resolutions

!Run *Run by the Filer when a user double-clicks on the
application directory

!RunImage The application’s executable code

Templates The application’s window template file

Res The application’s Toolbox resource file

Sprites[A][nn] The application’s private sprite file

Messages The application’s text messages

!Help Information about the application; it is run by the
Filer when the user chooses Help from the Filer
menu

In addition, many applications will have an accompanying ReadMe file to give
release notes. This should not be held within the application directory.
115

The !Boot file
Most of these resources are discussed in more detail below.

The !Boot file
A file called !Boot inside your application directory will be executed when the
application directory is first ‘seen’ by the Filer. It is usually an Obey file – a list of
commands to be passed to the command line interpreter. (The *Obey command is
documented in the RISC OS User Guide and the RISC OS Programmer’s Reference
Manual.)

You will probably use a !Boot file to set up the icons, filetypes and corresponding
system variables that RISC OS needs so that it can show your application in a
directory display and run it when you double-click on its icon. If your application is
called MyApp, this might involve:

● setting Alias$@RunType_ttt, Alias$@PrintType_ttt and File$Type_ttt variables

● loading !myapp, sm!myapp, file_ttt and small_ttt sprites from the
!MyApp.!Sprites file (see below).

However, an application should only grab filetypes on start-up if filetypes are not
currently set. This means that instructions such as *Set File$Type, Alias$@RunType
and Alias$@PrintType should only be executed if File$Type, RunType or PrintType
are not set at all (null) when the user starts that application.

The Filer only runs the !Boot file if an application with this full pathname has not
been ‘seen’ before. This prevents repeated delays from re-executing !Boot files, or
even re-examining application directories. However, it relies on the various
applications seen by the Filer having unique names – so, for example, if you have
more than one System directory, only the first one ‘seen’ will be used.

The !Sprites file
Your application directory must as a minimum contain a single sprite file called
!Sprites (e.g. !MyApp.!Sprites) which contain the sprites for the Filer to use to
represent your application’s directory.

Alternative versions may be provided for other screen resolutions, named using
the suffixes [A][nn] where:

● ‘nn’ encodes the horizontal and vertical resolutions in two digits ranging from
180dpi (as ‘1’), through 90dpi (as ‘2’), to 45 dpi (as ‘4’).

● ‘A’ denotes sprites with alpha transparency for use with versions of the
Window Manager that support them. Alpha sprites typically have the same
horizontal and vertical resolution, so ‘nn’ is reduced to a single digit.
116

Application directories
The most complete set of sprites would require more than 10 separate sprite files
to cover all the possible combinations. In practice most of the rectangular pixel
mode combinations aren’t used (the modes built into RISC OS are all 90 by 45dpi)
so you can leave the Wimp to create these for you which it does by scaling the
nearest matching square pixel resolution.

Consider supplying

● !Sprites as 90 by 45 dpi, these will be selected last only if no other
appropriately suffixed file can be found.

● !Sprites22 which are 90 by 90 dpi.

● !Sprites11 which are 180 by 180 dpi.

If you require alpha transparency

● !SpritesA !SpritesA2 !SpritesA1 are the corresponding names.

Each sprite file should contain both large and small versions of the application’s
sprite plus a sprite which will be used to represent iconised windows from the
application on the pinboard. For an application !MyApp the large and small sprites
must be named !myapp and sm!myapp respectively, and ic_myapp for the iconised
window. (The names of the sprites must be in lower case.) The !myapp sprite is also
used when the application is installed on the icon bar. There is more about the
design and size of these sprites in the section entitled Sprites on page 103.

!Sprites (and the other sprite files) can also provide sprites for filetypes that your
application ‘owns’. Again, you will need sprites in both large and small form. These
sprites must be named file_ttt and small_ttt, with ttt being the hex identity of the
file type. For example, the sprites used for a Maestro file are called file_af1 and
small_af1.

All the sprites in !Sprites are merged into the Wimp’s shared sprite pool using
*IconSprites. If your application uses any private sprites, you must keep them in
the Sprites resource file inside your application, and your application must load
them into a private sprite area. If there is a standard sprite available from the
Wimp’s sprite pool, use this as users will already be familiar with it. For example,
icons for many standard filetypes are available from the sprite pool (see below).
Your application must not redefine sprites in the pool automatically.

Standard icons provided

If your application creates or uses one of the following standard filetypes, you must
not provide a file_ttt icon for it but use the standard icons. Many of these are
provided in the Wimp sprite ROM area, for example:
117

The !Sprites file
Sprite Type

file_ae9 Alarm

file_aff DrawFile

file_c85 JPEG

file_fae Resource

file_faf HTML

file_fc6 PrntDefn

file_fc8 DOSDisc

file_fcc Device

file_fca Squash

file_fd6 TaskExec

file_fd7 TaskObey

file_fe4 DOS

file_fea Desktop

file_feb Obey
file_fec Template
file_fed Palette

file_ff2 Config

file_ff4 Printout

file_ff5 PoScript
file_ff6 Font
file_ff7 BBC Font
file_ff8 Absolute
file_ff9 Sprite
file_ffa Module
file_ffb BASIC
file_ffc Utility
file_ffd Data
file_ffe Command
file_fff Text

There are also two sprites named application and small_app, which are used for
applications which fail to provide an application sprite at all.

Multiple themes

A theme defines which window furniture the Window Manager will display, which
style of icons the Filer will display, and similar visual aspects of the RISC OS
desktop.
118

Application directories
Users may choose a visual theme that differs to the one on your own computer, but
your application should support the possibility of changing the theme, even if by
default only one is provided. This is a similar concept to ensuring displayed text is
looked up via a Messages file, while only providing English ones by default.

After the computer’s Boot application has run the name of the current theme is
defined in the system variable Wimp$IconTheme with a period appended, this allows
it to be used as an extra element inserted into a path name.

The Window Manager will automatically check to see if themed sprites exist when
it encounters a *IconSprites <MyApp$Dir>.!Sprites command, before
falling back to <MyApp$Dir>.!Sprites if the variable is unset, or the particular
theme chosen doesn’t have a corresponding set of resources provided.

Loading your application’s private sprite file should be similarly accommodating of
alternative themes. For applications using the Toolbox this is handled
automatically by the Toolbox module (version 1.52 or later) in the Toolbox_Initialise
SWI, any custom resource loader should follow the Wimp’s behaviour of first trying
to find the resource with <Wimp$IconTheme> inserted before the leaf name.

The !Run file
The !Run file is *Run when a user double-clicks on the application directory. It is
usually an Obey file. It is common to duplicate much of the !Run file within the
!Boot file to make sure Boot actions are taken even if the application is run using a
command (perhaps as part of a desktop boot file, for example). Don’ t execute
!Boot from within !Run.

Although the presence of more than one application with the same name should
be thought of as an unusual case, it should not cause anything to crash. Your
application should issue an explanatory error message and should not crash if it
can no longer find its resources after program startup.

The Messages file
A text file called Messages must be used to store all an application’s textual
messages, including menus, help text, etc. It is easy to replace your application’s
messages with a set in a different language if you decide to supply your application
on the international market, simply by switching the Messages file. This technique
also allows the application to be seamlessly transitioned to a Unicode desktop by
re-encoding the messages in UTF-8.

Try to make your application read in every textual message when it starts up. It
must not read them only as they are needed, as this forces a user of a floppy
disc-based system to have your application disc permanently in the drive. Make
119

The Templates or Res file
sure all error messages are read in when the application starts up, so that an error
message can be displayed immediately when required without the need first to
display a request for the disc holding the messages.

The Templates or Res file
This file contains the design of the windows used for dialogues in your application.
Those applications based around the Toolbox will use a resource file, those calling
the Wimp SWIs directly will use a template file.

By holding the design of all your dialogues in a Templates or Res file, rather than
generating them at runtime with code, your application can be supplied to an
international audience by replacing the respective file. This technique also allows
the application to be seamlessly transitioned to a Unicode desktop by re-encoding
the messages in UTF-8.

The !Help file
The !Help file is used to store plain text that provides brief help about your
application and its function. If this file is present, the Filer adds a Help entry to its
menu so a user can display the help text.

If more complex layout or illustrations are required for the help, consider
supplying the help as a set of HTML pages and graphics. Replace the !Help file
with an obey file which launches these in preference if the run type alias for HTML
is set, or falls back to a textual equivalent when no web browser is available.

Shared resources
Some resources are of general interest to more than one program. Typical
examples include fonts, patches to RISC OS, and modules that provide general
facilities.

Your application will be slightly harder to install if you use shared resources. Make
sure that your application checks that the resources are available and gives helpful
error messages if it can’t find them.

The System application

The System application is used to hold shared extension modules. The resources
in the System application can be shared amongst many users, and are typically
only needed when a program is loading. Consequently:

● On a network, only a single copy of the System application is needed.
120

Application directories
● On a single-floppy based computer, only a single master copy of the System.
application is needed. The user may have to insert this when starting an
application, but should not subsequently have to.

● Its !Boot file sets a system variable named System$Path giving its full
pathname.

If your application requires a more recent version of an extension module than
most users are likely to have, you must distribute it within an updated version of
System along with details of how to install the update using the system merge
feature of Configure.

Ensure that any licence conditions are met when redistributing extension modules
that you have not written yourself. It may be necessary to pay the original author a
fee, or meet some other terms of redistribution such as providing a disclaimer.

The Scrap application

The Scrap application is used as a location to store temporary files, you may freely
distribute this if your application needs to store temporary files. Its !Boot file sets
a system variable named Wimp$ScrapDir so you should encourage users of
single-floppy based computers to have a copy of the Scrap application on every
floppy disc, and to double-click on it when first viewing a new disc.

An application may create its own directory to hold temporary files. The directory
must be called <Wimp$ScrapDir>.MyApp. Your application must create this only
when it is needed, and not on start up.

Large applications
The rules above may break down for large applications. Some applications occupy
more than one floppy disc, with swapping required during operation. It is difficult
to give precise guidelines for such programs, because their requirements vary so
widely. The rules above, however, will be used for many smaller programs and so
will be reasonably familiar to users. Larger programs should be designed and
organised to fit within the same general philosophy, so that users find them easy
to install, understand and operate.

On the whole, though, it is better to aim to make an application compact and
precise in its functionality. Always bear in mind that some users only have a 4MB
machine and may want to run your application alongside others. Indeed, they may
have to run it alongside some (such as a printer driver). If your application can’t be
used with a 4MB machine, state this clearly, preferably on the packaging so that
users don’t buy it if they can’t use it. You will be able to sell to more users if you
121

Distribution
can keep within the requirements of a 4MB machine, of course. Even users with
more than 4MB will prefer to use the extra memory for multi-tasking than running
a single memory-hungry application.

Distribution
If your application is to be distributed and run from CD-ROM, remember that the
access time for CD-ROM is slower than for disc and that performance will be
affected by the CPU speed. The following guidelines will help you to write software
that works well from CD-ROM:

● Don’t include any applications other than your main application in the root
directory of the CD-ROM; other directories beginning with the character ! in
the root directory increase the application start up time and use up memory.

● Don’t use a Scrap directory on the CD-ROM as the medium can’t be written to.

● Read data in large chunks if possible as reading data involves considerable
delays to spin up the disc before data start to flow.

● It is best to include all data and applications needed by the CD-ROM on the
CD-ROM itself. You may also like to include extra material, such as curriculum
materials, on the disc.
122

Appendix A: Significant changes

The major changes since the last issue of this Guide are as follows:
● The minimum suggested configuration to support is a 4MB machine running
RISC OS 3.10 or later.

● Colour selection now uses the ColourPicker module, supporting different
colour models from a 16M entry palette.

● Cut and paste has become the standard method of cutting, copying and
moving selections. Drag and drop is introduced as a new method for cutting,
copying and moving selections, and can exist alongside cut and paste.

● The mechanism to store user choices and settings via the Choices variables is
described.

● Alongside the default !Sprites file, authors can now provide other resolutions
and even those with alpha transparency which the Window Manager will
automatically select if supported. The monochrome !Sprites23 is obsolete.

● Unicode can now be employed in applications, providing a much wider
character set than the previous 256 characters using ASCII encoding.

● Recommendations are given for providing easy access to help through new
entries in the icon bar menu, as well as standard phrases to use in interactive
help.

● Use of the User Interface Toolbox is now widespread, allowing applications to
be built rapidly that will conform to this style with little or no programming
effort.

● Richer dialogue box layouts are possible through careful use of the Nested
Window Manager, with windows appearing as ‘children’ inside a parent
window.

● Several desktop themes can be simultaneously supported by one application
through the use of the Wimp’s icon theme variable. Providing extra sets of
icons to match the users’ preferred theme will help it to sit alongside other
applications on the many and varied versions of RISC OS in use.
123

124

Glossary
action button

A ‘button’ in a dialogue box on which the user can click in order to cause some event
to occur.

Adjust

The right-hand button of the mouse.

Adjust size icon

An icon at the bottom right corner of a window, which the user can drag to adjust the
size of the window.

Adjuster arrow

An icon used in a dialogue box to increase or decrease an associated value, often
shown in an adjacent writable field.

application

A set of programs and accompanying resources having a specific purpose, and
represented by a single icon in the Filer display.

application directory

A directory holding the programs and resources that form an application.

Applications Suite

A set of applications supplied with every RISC OS-based computer.

ARM

The name of the processor used to run RISC OS. It is now developed by Advanced
RISC Machines Limited.
125

ASCII

The American Standard Code for Information Interchange is a 7 bit character
encoding scheme.

Back icon

An icon at the top left corner of a window, which the user can click to send the
window to the back of the desktop.

caret

A single red I-shaped bar which shows where input from the keyboard will appear.

CLI

The Command Line Interpreter, which gives users control of the computer using a
traditional command line.

Close icon

An icon at the top left of a window, which the user can click to close the window.

default action

The action taken if a user presses the Return key when a dialogue box is displayed.
This should do what the user originally intended, in as ‘safe’ a way as possible.

desktop

The GUI supplied as a part of RISC OS.

dialogue box

A window used for a dialogue with an application or the desktop.

directory display

A window showing the contents of a directory.

document

A data file that an editor can load, edit, save and print.
126

Glossary
editor

An application that presents files of a particular format as abstract objects which a
user can load, edit, save and print.

editor window

A window used to display a document that is being edited.

environment string

A string used to store environment settings: these might typically be start-up
options for an application.

error box

A special type of dialogue box that gives information to the user, and requires
acknowledgement that it’s been read.

Filer

The part of RISC OS that provides facilities for the user to control filing systems
from within the desktop.

filetype

A value associated with every file, that specifies the type of data that it contains.

gaining the caret

The time when a window first has the input focus, and hence contains the caret.

GUI

A Graphical User Interface, such as the RISC OS desktop.

hourglass

A sprite displayed to show that an application running under the desktop is itself
temporarily busy in a processor intensive activity, such as resizing an image.

HTML

Hyper Text Markup Language is a means of marking up text content for a web
browser to render, such as might be useful for providing an online copy of a user
manual.
127

icon

A small graphic object (usually a sprite) used symbolically by the desktop. Amongst
the things an icon might typically represent are: an option or action within a
dialogue box, a file, an application, or a physical device.

icon bar

The bar at the bottom of the screen used by the desktop to hold icons. These usually
represent applications or physical devices.

icon bar menu

A menu produced as a result of the user clicking Menu over an icon on the icon bar.

Iconise icon

An icon at the top right of a window, which the user can click to minimise the window
to pinboard.

input focus

What the window containing the caret is said to have, shown by changing the border
colour of the window.

Nested Window Manager

A version of the Window Manager that allows windows to apply recursively, so that a
child window may appear within a parent. Wimp 3.98 is the first general release of
this version.

kernel

The main part of RISC OS.

leafname

The last part of a pathname.

Menu

The middle button of the mouse.

menu

A set of options from which the user can choose, typically having a tree structure.
128

Glossary
menu item

One available option or choice on a menu.

modified flag

A flag used by an editor to record, for each document currently being edited, whether
it has been modified.

multi-document editor

An editor that can edit several documents of the same type concurrently. The opposite
is a single-document editor.

multi-tasking

The ability to run multiple tasks or applications at the same time. RISC OS is a
multi-tasking operating system.

Obey file

A file of commands for execution by RISC OS.

option button

A ‘button’ representing a switch, that can either be on or off.

OS graphic unit

A unit used for defining graphics under RISC OS, so that they are independent of
the current screen mode. There are nominally 180 OS graphic units (or just ‘OS units’)
to the inch.

palette

A file or data that maps between the colours that are to be displayed on the screen
and the much larger number of potential colours.

pane

A dialogue box that is attached to a particular window.

parent

The precursor of an object: so for a file its parent is the directory that holds it, and
for a window its parent is the window from which it was opened.
129

pathname

A complete specification of where a file is stored, including the filing system, all
parent directories, and the file’s own name (or leafname).

persistent dialogue box

A dialogue box that appears when the user chooses a menu item followed by an
ellipsis. It remains on screen when the parent menu has been closed, and may
suspend its parent application until it is filled in.

pointer

An icon on the desktop the movement of which is linked to the mouse.

pop-up menu

A menu within a dialogue box that normally just shows the currently selected option,
but that the user can make ‘pop up’ to choose an alternative option.

printer driver

A RISC OS application used to print documents: several are supplied as part of the
Applications Suite.

radio button

One of a group of ‘buttons’, only one of which may be selected at once.

RISC

Reduced Instruction Set Computer: a design philosophy used in the ARM which
implements only the most frequently used processor instructions, and
concentrates on making them execute at great speed.

RISC OS

The operating system and GUI, supplied in ROM or other non volatile storage. It is
pronounced as ‘RISC-OH-ESS’.

RISC_OSLib

A library supplied with Acorn C/C++ development environment, designed to help
program applications to run under the desktop.
130

Glossary
ROM

Read Only Memory is a type of storage medium that can contain software
programs. Its contents are retained when the power is removed.

screen mode

A number that defines the appearance of the display: its resolution, and the
number of available colours.

scroll arrow

An icon on the right-hand side of a window and/or the bottom, used to scroll the
contents of the window by a small amount.

scroll bar

An area on the right-hand side of a window and/or the bottom, used to scroll the
contents of the window, by approximately the height/width of the window.

scrollable list

A window within a dialogue box that shows a set of available options, and has icons
with which the user can scroll through the options before choosing one.

Select

The left-hand button of the mouse.

select box

A rectangular box used to outline an area within which any objects will be selected.

selection

A portion of a document selected by a user, and on which operations may be
performed.

SI

The most widely used international system of units for measurement of physical
quantities, from the French Le Système International d'Unités.
131

single-document editor

An editor that can edit only one document at a time. The opposite is a multi-document
editor.

slider

A bar on the right-hand side of a window and/or the bottom, used to scroll the
contents of the window.

sprite

A graphic object that is pixel-based (i.e. one that is defined as a bit-map).

sprite pool

An area of memory used and maintained by RISC OS for storing sprites.

style

Indicates a stylistic variation in the letters of a font (for example Italic, Oblique or
Shadow). See also typeface and weight.

submenu

A menu reached from another menu (its parent).

Task Manager

An application that is a standard part of the RISC OS desktop, with which the user can
control and monitor applications and the use of the computer’s memory.

template editor

An application used to interactively design and create windows and dialogue boxes for
use within an application.

Title bar

A bar across the top of a window, used to display its title and (sometimes) status
words.

Toggle size icon

An icon at the top right corner of a window, which the user can click to toggle the size
of the window between a ‘standard’ size and a ‘maximum’ size.
132

Glossary
toolbox

Window or pane of tool icons from which a user may select a tool to use in an
application. A toolbox may be free-standing or attached to another window.

transient dialogue box

A dialogue box that appears as a submenu, and functions in the same way,
disappearing when the parent menu is closed.

transparency mask

An optional part of a sprite that defines which pixels of that sprite are transparent.

typeface

A name used for all similar looking fonts (e.g. Homerton). This may also include a
component specifying a variation on the standard font (e.g. HomNarrow). See also
style and weight.

User Interface Toolbox

A set of support modules to assist in writing Style Guide compliant applications
easily.

UTF-8

A means of encoding Unicode code points efficiently in a byte stream.
Abbreviation for Universal Character Set and Transformation Format 8-bit.

validation string

A string associated with a writable field that specifies what characters may be legally
typed.

weight

Indicates the density of the letters of a font (for example Medium or Bold). See also
style and typeface.

Wimp

The part of RISC OS that manages windows within the desktop, incidentally providing
much of its functionality. It is an acronym of Windows Icons Menus and Pointer.
133

window

A rectangular area of the desktop devoted to a particular function, such as a dialogue
box, directory display, editor window or error box.

Window Manager

The formal name for the Wimp.

writable field

A field in a dialogue box or displayed from a menu item within which the user can
type text.
134

Index

automatic scrolling see window (automatic
A
About this file see Info (File menu) 25
About this program see Info (icon bar menu) 20
action button 54-55, 108, 125

creating 109
default see default action button
wording 66

Adjust 13, 125
use 34, 52, 77

Adjust size icon 125
definition 27
use 30

adjuster arrow 56, 108, 125
creating 110

Alias$@PrintType… variables 116
Alias$@RunType… variables 116
Alt key 71, 96
application 125

large 121
loading 18, 19
quitting 21, 46
resource files 115-121
single-tasking 34
starting see loading 19

application directory 115-122, 125
application note

Drag-And-Drop Functional Specification 82
Writing games 35

Applications Suite 125
conformity to standards 2

ARM 125
arrow keys

in dialogue boxes 53
ASCII 97, 126
assembler 101

scrolling)

B
Back icon 126, 128

definition 27
use 28

BASIC 101
bold text 45
!Boot file 115, 116

C
C language 101
caret 33, 53, 69-70, 109, 126, 127
CD-ROM 122
character sets 95, 96
Choices 91
choosing menu items see menu items (choosing)
CLI 126
clicking with mouse button

definition 14
clipboard 80-81
Close icon 126

definition 27
dialogue box 50
use 28-29

closing windows see window (closing)
colour 83-85

selection 45-46, 60-61
coloured text 85
configuration 89-94
Configure application 87, 93
context-sensitive pointer see pointer shapes
135

Index
Copy 44
copying

intelligent 77
objects 34

Ctrl key
keyboard shortcuts 71

Cut 44, 80
cut and paste 44, 80

D
data transfer 5, 25-26
date format 96
default action button 54, 108

creating 108-109
wording 108

deleting
intelligent 77

desktop 9-11, 126
dialogue box 37, 49-67, 126

appearance 63
closing window see window (closing)
colours 112
components 108-112
default action 52, 126
definition 11
delayed action 51
Find/Replace 60
grouping items 64
pane 129
persistent 11, 50, 51, 130
position 112
Print 58
redrawing 103
Save 58-59
Scale view 60
Select colour see colour (selection)
size 63, 108
size of components 108
standard components 52-56, 108-112
standard designs 57-63
Text style see font selection

transient 11, 50, 133
types 50-51
wording 65-66

directory display 104, 126
definition 10

display field 54, 108
creating 109

displaying menus see menus (displaying)
document 126

exporting 43
inserting into another 23
loading 22
new 21, 22
printing 24-25, 44
printing see also dialogue box (Print)
saving 23-24, 43-44
saving a selection see also dialogue box

(Save)
saving see also dialogue box (Save)
saving selection 43

documents
information about 25

double-clicking
definition 14
use 115

drag and drop 34
dragging

definition 14
objects 33

E
ECF patterns 83
Edit menu 44
editor 127

definition 21
multi-document 129
single-document 132

Effect menu 44-46
environment string 127
error box 127

definition 11
136

Index
error messages 66-67, 120
Escape key 73

in dialogue boxes 52, 53
exporting document see document (exporting)

F
File menu 42-44
File$Type… variables 116
Filer 127
filetype 23, 116, 127

export 59
exporting document 43
standard types 117

finding text see dialogue box (Find/Replace)
font selection 44-45, 62-63
function keys

keyboard shortcuts 72

G
gaining the caret 127
graphical user interface see GUI
gridlines 85
group box 64

creating 111-112
GUI 1, 127

H
hand pointer 33
hardware

accessing directly 102
!Help file 46, 115, 120
highlighted 57, 85

definition 11
hourglass 127
HTML 120, 127

I
icon 17-18, 116, 128

position on icon bar 104-105
icon bar 128

definition 10
icon bar menu 46, 106, 128

definition 11
iconised window 29, 105
icons

appearance 17-18
large icons 18, 104
small icons 18, 104

Info
File menu 25, 42
icon bar menu 20, 46

info box
definition 11

input focus 69-70, 127, 128
Insert key 73
international support 95-97, 119
inverse video see highlighted
italic text 45

K
kernel see RISC OS (kernel)
keyboard layout 96
keyboard shortcuts 51, 70-71, 95

L
language 95
leafname 128
loading applications see application

M
main window

definition 10
137

Index
Menu 13
menu items 129

appearance 46-47
choosing 14, 38
definition 11
size 106

menus 37-47, 106-107, 128
colours 107
context-sensitivity 37
definition 11
displaying 37-38
interactive help 107
keyboard shortcuts see keyboard shortcuts
pop-up see pop-up menu
position 106
removing 38
structure 39
UTF-8 shortcuts 107

Messages file 115, 119
modified flag 28, 129
monitors 89-90
mouse 13-15

buttons 14
definitions of buttons 13
use 14

Move 44
moving

intelligent 77
objects 34
selections 80-81

multi-tasking 4-5, 10, 129

N
Nested Window Manager 128
networks 90
new document see document (new) 21

O
Obey file 116, 119, 129

option button 55, 108, 129
creating 109

OS units 90, 103, 129

P
palette 83, 129
pane window

definition 11
paper limits 31
parent 129
Paste 44, 80-81
pathname 24, 59, 130
persistent dialogue box see dialogue box

(persistent)
pinboard 10

definition 10
pointer 14, 112, 130

auto scroll 33
caret 33
drop 33
hand 33
menu 33
shapes 32-33

pop-up menu 47, 57, 107, 130
definition 11
icon 111

pressing mouse button
definition 14

Print Scrn key 24, 70, 73
printer driver 130
printers 90
printing see document (printing)
programming language 101

see also languages by name

Q
Quit see application (quitting)
138

Index
R
radio button 55, 108, 130

creating 110
RAM Transfer 26
ReadMe file 115
Redo function 4
redraw speed 103
releasing mouse button

definition 14
Return key 73

in dialogue boxes 52, 53
RGB 61, 83

colour selection see colour (selection)
RISC 130
RISC OS 130

kernel 102, 128, 133
patches 120
Programmer’s Reference Manual viii, 5, 25,

27, 37, 49, 96, 97, 116
programming interfaces 102
versions of 6-7

RISC_OSLib 130
root menu

definition 11
!Run file 115, 119
!RunImage file 115

S
saving a document see document (saving)
Scrap application 121
Scrap Transfer 26
screen

taking over 34
screen mode 90, 131
screen size 90
scroll arrow 131

definition 27
use 31

scroll bar 131
definition 27

use 31, 57
scrollable list 57, 131
scrolling pane 112
scrolling windows see window (scrolling)
Select 13, 131

use 77
select box 79, 131
selection 131

copying 80
definition 14
from stacked objects 79
moving 80
objects 78-79
saving see also dialogue box (Save)
saving see also document (saving selection)
text 77
using select box 79

shared resources 120-121
Shift key 34

keyboard shortcuts 71
Shutdown 21
SI 97, 131
single-tasking applications 34
slider 108, 132

creating 110
definition 27
use 31, 56

sound 85-87
sprite 132

designing 103
size 104
transparency mask 103, 133

sprite pool 132
!Sprites file 115, 116-117
Sprites file 115
starting application seeapplication (loading) 19
status word 132
style 132
Style menu 44-46
submenu 37, 132

definition 11
System application 116, 120-121
system variables 116
139

Index
System$Path 121

T
Tab key 73

in dialogue boxes 53
taking over the screen 34
Task Manager 132
template editor 132
Templates file 115
terminology 6, 10-11
text

colour 85
finding and replacing see dialogue box

(Find/Replace)
text label 108

creating 111
text selection see selection (text)
Title bar 28, 132

clicking on 28
definition 27

Toggle size icon 132
definition 27
use 30

tool 133
Toolbox

resource file 115
use of 102

toolbox 67
instant effect 51

transient dialogue box see dialogue box
(transient)

transparency mask see sprites (transparency
mask)

triple-clicking
definition 14

true colours see RGB
typeface 133

U
Undo function 4
Unicode

dialogue design 120
Messages file 119
support 97

user choices see Choices
UTF-8 133

V
validation string 24, 53, 59, 83, 109, 110, 111, 133
view scale 60
volume 87

W
weight 133
Wimp 3, 27-34, 37, 49, 70, 103, 104, 117, 133
Wimp$IconTheme 119
Wimp$ScrapDir 121
window 27-34, 105, 134

automatic scrolling 34
bringing to the front 28
closing 28-29, 63
colours 105
definition 10
dragging within 33
icon names 27
iconising 29, 105
moving 30
nesting 31
parts 27-28
positioning 105
redrawing 33, 103
resizing 30
scrolling 31, 34, 103
sending to the back 28

Window Manager see Wimp
word
140

Index
definition 77
writable field 108, 134

creating 109
dialogue box 53

Z
zoom 60
141

Index
142

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

✃

Reader’s Comment Form
RISC OS Style Guide, Issue 3

We would greatly appreciate your comments about this Manual, which will be taken into account for the
next issue:

How would you classify your experience with computers?

Did you find the information you wanted?

Do you like the way the information is presented?

General comments:

If there is not enough room for your comments, please continue overleaf

Used computers before Experienced ProgrammerExperienced User Programmer

Please send an email with your
This information will only be used to get in touch with you in case we wish to explore your
comments further

Your name and address:

comments to:

ctools@riscosopen.org

	Contents
	About this Guide
	Finding out more

	1 Introduction
	The scope of this Guide
	Who should use this Guide?
	Why have a standard?
	Into the future

	2 Starting a new application
	Thinking about a new application
	Ease of use
	Multi-tasking
	Data interchange
	Consistency on the desktop
	Quality
	Terminology
	Versions of RISC OS

	3 The desktop
	Using the desktop
	The pinboard
	Multi-tasking
	Terms for desktop items

	4 The mouse
	Introduction
	Mouse buttons
	Mouse operations
	Mouse functions

	5 Icons
	Introduction
	When to use icons
	Appearance of icons
	Large and small icons
	Icons and screen resolution
	Loading an application

	6 Standard operations
	Introduction
	Starting an application
	Providing information about your application
	Closing windows
	Quitting applications
	Editors

	7 Windows
	Introduction
	Parts of a window
	Bringing a window to the front
	Sending a window to the back
	Closing a window
	Iconising a window
	Resizing a window
	Moving a window
	Scrolling a window
	Nesting a window
	Context-sensitive pointers
	Dragging objects that are within a window
	Taking over the screen

	8 Menus
	Introduction
	Basic menu operation
	Menu structure
	Standard menu items
	Appearance of menus
	Pop-up menus
	Size and position of menus

	9 Dialogue boxes and toolboxes
	Introduction
	3D and dialogue boxes
	Types of dialogue box
	Dialogue boxes and keyboard shortcuts
	Default actions
	Standard components in dialogue boxes
	Scrollable lists and pop-up menus
	Standard dialogue boxes
	Appearance of dialogue boxes
	Wording of dialogue boxes
	Toolboxes

	10 Handling keyboard input
	Introduction
	Gaining the caret
	Unknown keystrokes
	Keyboard shortcuts
	Special needs support

	11 Handling selection
	Introduction
	Selecting text
	Selecting objects

	12 Colour and sound
	Introduction
	Colours and the palette
	Sound

	13 Configurations and user choices
	Introduction
	Hardware configuration
	User choices
	Software configuration

	14 International support
	Introduction
	Language
	Character sets
	Information formats
	Unicode support

	15 Implementing the design
	Introduction
	Choice of programming language
	Using legal operations
	Responsiveness
	Units of measurement
	Sprites
	Windows
	Menus
	Dialogue boxes

	16 Application directories
	Introduction
	Application resource files
	The !Boot file
	The !Sprites file
	The !Run file
	The Messages file
	The Templates or Res file
	The !Help file
	Shared resources
	Large applications
	Distribution

	Appendix A: Significant changes
	Glossary
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Z

